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Abstract
By analysing the concept of contextuality (Bell–Kochen–Specker) in terms of
pre- and post-selection, it is possible to assign definite values to observables in a
new and surprising way. Physical reasons are presented for restrictions on these
assignments. When measurements are performed which do not disturb the pre-
and post-selection (i.e. weak measurements), then novel experimental aspects
of contextuality can be demonstrated. We also prove that every PPS-paradox
with definite predictions directly implies ‘quantum contextuality’ which is
introduced as the analogue of contextuality at the level of quantum mechanics
rather than at the level of hidden variable theories. Finally, we argue that
certain results of these measurements (e.g. eccentric weak values outside the
eigenvalue spectrum) cannot be explained by a ‘classical-like’ hidden variable
theory.

PACS numbers: 03.65.Ta, 03.65.−w, 06.30.−k

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A traditional concept of the quantum state |�in〉 is that it generally provides only statistical
information about the outcome of an ideal measurement. Therefore, many authors proposed
that a theory based on this interpretation of a quantum state could be ‘completed’ by a
hidden variable theory (HVT). Such a theory would bear a similar relationship to quantum
mechanics (QM) as classical mechanics has to classical statistical mechanics. That is QM
can be understood in terms of a deeper theory, the HVT. The relationship between classical
mechanics and classical statistical mechanics is relatively simple because an ideal classical
measurement precisely measures a property of a system, without affecting the system under
study. Measurement of one property will not interfere with the measurement of another
property. Thus there is a simple relation between the theory and underlying physical processes
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(the outcome of measurements directly tells us what values to assign to all variables of the
theory).

Moving over to QM, there are two general constraints on any HVT which reproduces QM:
(a) the Bell–Kochen–Specker theorem (BKS) [20, 23] and Gleason’s [32] theorem showed that
any HVT must be contextual, and (b) Bell’s theorem [19] showed that any HVT must be non-
local. Gleason and BKS proved that one cannot assign unique answers to yes–no questions
(posed to single systems) in such a way that measurement simply reveals the answer as a
pre-existing property that was intrinsic solely to the quantum system itself. The specification
of the HVT is given by a ‘value function’ V �ψ(Â) which assigns a value to an observable Â

when an individual system is in the state �ψ . BKS assumed that V �ψ(Â) should satisfy

V �ψ(F {Â}) = F {V �ψ(Â)}. (1.1)

That is, any functional relation of an operator that is a member of a commuting subset of
observables must also be satisfied if one substitutes the values for the observables into the
functional relations. For example, if a system is characterized by commuting observables
Â1 and Â2 then condition (1.1) requires that all the relationships or functions between these
operators should also be satisfied when V �ψ(Â1) and V �ψ(Â2) are substituted into the same
functional relations. This condition determines the sum and product rules

V �ψ(Â1 + Â2) = V �ψ(Â1) + V �ψ(Â2) (1.2)

V �ψ(Â1Â2) = V �ψ(Â1)V �ψ(Â2). (1.3)

HVTs which meet these conditions are noncontextual: all yes–no questions can be associated
with a value assignment V �ψ which provides a single unique answer, irrespective of the set of
other commuting yes–no questions that it is associated with. BKS showed that attempting such
an assignment to some observables is inconsistent: in any system (of dimension greater than 2)
the 2n possible ‘yes–no’ assignments (to the n projection operators representing the yes–no
questions) cannot be compatible with the sum (1.2) and product (1.3) rules for all orthogonal
resolutions of the identity. For example, consider a complete set of spectral projectors of an
operator Â with discrete eigenvalues, so that P̂i = P̂A=ai

, such that
∑n

i=1 V �ψ(P̂i) = 1. Then

only one of the projection operators can give a ‘yes’ assignment (P̂i = 1) and the rest have
to be ‘no’ (i.e. P̂i = 0). However, �ψ can be decomposed into many different basis sets, and
the value that V �ψ assigns must be independent of the particular basis. BKS showed that this
cannot be done.

Given this impossibility proof, an interesting approach to HVTs and BKS is to inquire
whether anything new can be learned about experimental situations, in the same spirit as
Shimony’s apt phrase ‘experimental metaphysics’. For example, Bell’s theorem led to
interesting experiments which tested the notion of whether quantum entanglement could
be stronger than classical correlations. Another example is Hardy’s paradox [43] (HVTs
for position could not be assigned) which was traditionally ‘resolved’ by arguing that
measurements to verify the paradox could not be implemented simultaneously and therefore
Hardy’s paradox was purely a formal result without empirical consequences. However in
[11, 29], we shifted this situation by demonstrating that weak measurements (WM) could be
implemented simultaneously on the paradoxical Hardy statements, thereby leading to novel
experimental results [35]).

Similarly, the principal result of this paper is to question whether BKS is just a formal
result (i.e. negative statements concerning the possibility of a classical-like ‘noncontextual
HVT’) or if BKS has new positive aspects including new experimental consequences. We
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probe this by utilizing the natural connection between counter-factual statements, pre- and
post-selection and the outcome of WMs, the weak value (WV). Although the WVs exhibit
strange, non-classical behaviour in BKS situations, they do obey a simple, intuitive and,
most importantly, self-consistent logic. We then connect contextuality with issues that can be
probed experimentally by WMs, thereby distinguishing the instant effort from previous focus
on HVTs.

The novel results of this paper lay the ground work for further possible exploitation of the
differences between classical and quantum information. By way of example, while the study
of the non-classical aspects of entanglement (Einstein–Podolsky–Rosen/Bohm) started as a
foundational examination of HVTs, it was subsequently probed experimentally and used as a
resource for quantum computation and communication. Similarly, using novel ‘generalized’
states suggested by TSQM (which are also utilized in the instant paper), Englert et al [12]
demonstrated a new form of cryptography [18], and experiments based on the optical version
of this problem [17] were successfully performed.

1.1. Pre- and post-selection and time-symmetric quantum mechanics

Pre- and post-selection (PPS) were originally probed with the time-symmetric reformulation
of quantum mechanics (TSQM, introduced by Aharonov, Bergmann and Lebowitz also known
as ABL [2]1, for a good review, see [49, 50]). While TSQM is a new conceptual point of view
that has predicted novel, verified effects which seem impossible according to standard QM,
TSQM is in fact a reformulation of QM. Therefore, experiments cannot prove TSQM over
QM (or vice versa). The motivation to pursue such reformulations, then, depends on their
usefulness. Indeed, we believe that to be useful and interesting, any reformulation of QM
should meet several criteria such as those met by TSQM:

• TSQM is consistent with all the predictions made by standard QM;
• TSQM brings out features in QM that were missed before: e.g. the ‘weak value’ (WV)

of an observable which was probed by a new type of quantum measurement called the
‘weak measurement’ (WM) [5];

• TSQM lead to simplifications in calculations (as occurred with the Feynman
reformulation) and stimulated discoveries in other fields: e.g. ABL influenced work
in cosmology (e.g. Gell-Mann and Hartle [22]), in superluminal tunnelling ([21, 33]), in
quantum information (e.g. the quantum random walk [8] or cryptography [15, 16]), led to
the discovery of super-oscillations [51] and new aspects of the uncertainty relations [52],
etc, and

• TSQM suggests generalizations of QM that were missed before, e.g. a new solution to
the quantum measurement problem.

Using TSQM, we show how to assign definite values to sets of BKS observables in new
and surprising ways. We also show how measurement disturbance can arise in a new way
when value assignments depend on both the pre- and the post-selection. An ‘intriguing’
physical reason is presented to explain why this scheme cannot be applied to two or more
ideal measurements (IMs): the two IMs interfere with each other because some assignments

1 ABL is intuitive: 〈aj |Utin→t |�in〉|2 is the probability of obtaining |aj 〉 having started with |�in〉. If |aj 〉 was
obtained, then the system collapsed to |aj 〉 and |〈�fin|Ut→tfin |aj 〉|2 is then the probability of obtaining |�fin〉. The
probability of obtaining |aj 〉 and |�fin〉 then is |αj |2. This is not yet the conditional probability since the post-selection
may yield outcomes other than 〈�fin|. The probability of obtaining |�fin〉 is

∑
j |αj |2 = |〈�fin|�in〉|2 < 1. The

question being investigated concerning probabilities of aj at t assumes we are successful in obtaining the post-selection
and therefore requires the denominator in equation (1.4),

∑
j |αj |2, which is a renormalization to obtain a proper

probability.
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of eigenvalues to operators are based on just one of the two boundary conditions (i.e. either
the pre- or the post-selected vector) while some assignments of eigenvalues are based on
both boundary conditions (i.e. both the pre-selected and the post-selected vectors, what we
call diagonal-PPS). In addition, we show that when measurements are performed which
do not disturb the PPS (i.e. WMs), then novel experimental aspects of contextuality can
be demonstrated. We also prove that every PPS-paradox with definite predictions directly
implies ‘quantum contextuality’ which is introduced as the analogue of contextuality at the
level of quantum mechanics rather than at the level of HVTs. For example, we apply the
approach developed in this paper to Mermin’s work on PPS and contextuality (reviewed in
subsubsections 3.2.1–3.2.4). Mermin reflected: ‘ . . . what follows is not idle theorizing about
‘hidden variables’. It is a rock solid quantum mechanical effort to answer a perfectly legitimate
quantum mechanical question’ [26]. We also demonstrate an isomorphism between WVs in
BKS situations and EPR entanglement. Finally, we argue that certain results of WMs (WVs
outside the eigenvalue spectrum) cannot be explained by a ‘classical-like’ HVT.

1.2. The main idea behind time-symmetric quantum mechanics

The main idea behind TSQM focuses on measurements which occur at the present time t
while the state is known both at tin < t (past) and at tfin > t (future). More precisely, we
start at t = tin with a measurement of a non-degenerate operator Ôin (for simplicity, we
consider non-degenerate operators without lack of generality). This yields as one potential
outcome the state |�in〉, i.e. we prepared the ‘pre-selected’ state |�in〉. At the later time tfin,
we perform another measurement of a non-degenerate operator Ôfin which yields one possible
outcome: the post-selected state |�fin〉. At an intermediate time t ∈ [tin, tfin], we measure a
non-degenerate observable Â, with eigenvectors {|aj 〉}. We wish to determine the conditional
probability of aj , given that we have both boundary conditions, |�in〉 and 〈�fin|. To answer
this, we use the time displacement operator: Utin→t = exp{−iH(t − tin)}, where H is the
Hamiltonian for the free system (for simplicity, we assume H is time independent and set
h̄ = 1). The standard theory of collapse states that the system collapses into an eigenstate |aj 〉
after the measurement at t with an amplitude 〈aj |Utin→t |�in〉. The amplitude for our series
of events including the post-selection is αj ≡ 〈�fin|Ut→tfin |aj 〉〈aj |Utin→t |�in〉 illustrated in
figure 1(a). This means that the conditional probability of measuring aj given |�in〉 is pre-
selected and |�fin〉 will be post-selected is

Prob(aj , t |�in, tin;�fin, tfin) =
∣∣〈�fin|Ut→tfin |aj 〉〈aj |Utin→t |�in〉

∣∣2∑
n

∣∣〈�fin|Ut→tfin |an〉〈an|Utin→t |�in〉
∣∣2 (1.4)

which is the ABL formula [2]. As a first step towards understanding the underlying time-
symmetry in the ABL formula, we consider the time reverse of the numerator of equation (1.4).
First we apply Ut→tfin on 〈�fin| instead of on 〈aj |. We note that 〈�fin|Ut→tfin = 〈

U
†
t→tfin

�fin

∣∣
by using the well-known QM symmetry U

†
t→tfin

= {e−iH(tfin−t)}† = eiH(tfin−t) = e−iH(t−tfin) =
Utfin→t . We also apply Utin→t on 〈aj | instead of on |�in〉 which yields the time-reverse
reformulation of the numerator of equation (1.4),

〈
Utfin→t�fin

∣∣aj

〉〈
Ut→tinaj

∣∣�in
〉

as depicted in
figure 1(b). Further work is needed to formulate what we mean by time-symmetry with respect
to boundary conditions, otherwise referred to as the 2-vectors in TSQM. For example, if we
are interested in the probability for possible outcomes of aj at time t, we must consider both
Utin→t |�in〉 and

〈
Utfin→t�fin

∣∣, since these expressions propagate the pre- and post-selection to
the present time t (see the conjunction of both figures 1(a) and (b) giving 1(c); these 2-vectors
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(a) (b) (c)

Figure 1. Time-reversal symmetry in probability amplitudes.

are not just the time reverse of each other). This represents the basic idea behind TSQM as
can be seen in the re-expression of equation (1.4):

Prob(aj , t |�in, tin;�fin, tfin) =
∣∣〈Utfin→t�fin|aj 〉〈aj |Utin→t |�in〉

∣∣2∑
n

∣∣〈Utfin→t�fin|an〉〈an|Utin→t |�in〉
∣∣2 . (1.5)

While this mathematical manipulation clearly proves that TSQM is consistent with QM,
it yields a very different interpretation. For example, the action of Utfin→t on 〈�fin| (i.e.〈
Utfin→t�fin

∣∣) can be interpreted to mean that the time displacement operator Utfin→t sends
〈�fin| back in time from the time tfin to the present t.

1.3. Pre- and post-selection and the three-box paradox

To illustrate some of the surprising consequences of TSQM (which will be relevant to
contextuality), we consider the three-box paradox ([3], verified experimentally [34]) which
uses a single quantum particle that is placed in a superposition of being in three closed,
separated boxes. The particle is pre-selected to be in the state |�in〉 = 1/

√
3(|A〉 + |B〉 + |C〉),

where |A〉, |B〉 and |C〉 denote the particle localized in boxes A,B, or C, respectively. The
particle is post-selected to be in the state |�fin〉 = 1/

√
3(|A〉+|B〉−|C〉). If an IM is performed

on box A in the intermediate time (e.g. we open the box), then the particle is found in box A

with certainty. This is confirmed by the ABL [2] probability for projection in A:

Prob(P̂A) = |〈�fin|P̂A|�in〉|2
|〈�fin|P̂A|�in〉|2 + |〈�fin|P̂B + P̂C |�in〉|2

= 1.

This can also be seen intuitively by contradiction: suppose we do not find the particle in
box|A〉. In that case, since we do not interact with box |B〉 or |C〉, we would have to conclude
that the state that remains after we did not find it in |A〉 is proportional to |B〉 + |C〉. But this
is orthogonal to the post-selection (which we know will definitely be obtained). Because this
is a contradiction, we conclude that the particle must be found in box A. Similarly, using the
same reasoning, the particle can be found with certainty in box B, i.e. Prob(P̂B = 1) = 1.
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(a) (b)

Figure 2. (a) Pre-selected vector |�in〉 = 1/
√

3(|A〉+ |B〉+ |C〉) propagates forwards in time from
tin to t1, and post-selected vector |�fin〉 = 1/

√
3(|A〉 + |B〉 − |C〉) propagating backwards in time

from tfin to t2. (b) Ideal measurement of P̂A at t1 and of P̂B at t2.

The ‘paradox’ can thus be stated: ‘given that we only have a single particle, in what sense,
if any, can these two definite statements (i.e. Prob(P̂A = 1) = 1 and Prob(P̂B = 1) = 1) be
simultaneously true’?

1.4. Counterfactuals

There is a widespread tendency to ‘resolve’ these paradoxes by pointing out that there is an
element of counter-factual reasoning in them: the contradictions arise only because inferences
are made that do not refer to actual experiments. Had the experiment actually been performed,
then standard measurement theory predicts that the system would have been disrupted so
that no paradoxical implications arise. By way of example, suppose we applied this to the
three-box paradox: the resolution then is that there is no meaning to say that the particle is
in both boxes without actually measuring both boxes during the intermediate time. That is
Prob(P̂A = 1) = 1 if only box A is opened, while Prob(P̂B = 1) = 1 if only box B is opened.
If IMs are performed on both boxes A and B, then obviously the particle will not be found in
both boxes, i.e. P̂AP̂B = 0, and the paradox disappears!

While we cannot discern the sense in which Prob(P̂A = 1) = 1 is simultaneously true
with Prob(P̂B = 1) = 1 by using IMs, there is still a mystery here: even though P̂A and P̂B

commute with each other, measurement of one can disturb the measurement of the other. A
novel explanation of this situation, we suggest, is as follows.

• In order to deduce Prob(P̂A = 1) = 1 (or Prob(P̂B = 1) = 1), ABL requires information
from both the pre- and the post-selected vectors. We call this situation ‘diagonal-pre- and
post-selections’ or ‘diagonal-PPS’.

• When we actually measure P̂A, then this measurement will limit the ‘propagation’ of both
the pre- and the post-selected vectors that are required for any attempt to ascertain other
intermediate values, such as P̂B (see figure 2(b)).

• If we subsequently were to measure P̂B, then the necessary information from both the pre-
and post-selected vectors is no longer available (i.e. information from tin cannot propagate
beyond the IM of P̂A at time t1 due to the disturbance caused by the IM of P̂A).

• Thus, even though P̂A and P̂B commute, the IM of one can disturb the IM of the other: a
violation of the product rule.2

2 In general, if |�1〉 is an eigenvector of Â with eigenvalue a and |�2〉 is an eigenvector of B̂ with eigenvalue b and
[Â, B̂] = 0, then if Â and B̂ are known only by either pre-selection or post-selection, then the product rule is valid,
i.e. ÂB̂ = ab. However if Â and B̂ are known by both pre-selection and post-selection, then the product rule is not
generally valid, i.e. ÂB̂ �= ab, i.e. they can still disturb each other, even though they commute [28].



Pre- and post-selection, weak values and contextuality 9039

In addition to this insight, we have proven [11, 29] that one should not be so quick in
throwing away counter-factual reasoning; though indeed counter-factual statements have no
observational meaning, such reasoning is actually a very good pointer towards interesting
physical situations. Without invoking counter-factual reasoning, we have shown that the
apparently paradoxical reality implied counter-factually has new, experimentally accessible
consequences. These observable consequences become evident in terms of WVs and WMs,
which allow us to test—to some extent—assertions that have been otherwise regarded as
counter-factual.

Again, the main argument against counter-factual statements is that if we actually perform
IMs to test them, we disturb the system significantly, and such disturbed conditions hide the
counter-factual situation, so no paradox arises. With the disturbance-based understanding as
to why both statements are not simultaneously true, we can now see the ‘sense’ in which the
definite ABL assignments should be simultaneously relevant. Our main argument is that if
one does not perform absolutely precise (ideal) measurements but one with finite accuracy,
then one can bound the disturbance on the system. For example, according to Heisenberg’s
uncertainty relations, a precise measurement of position reduces the uncertainty in position to
zero �x = 0 but produces an infinite uncertainty in momentum �p = ∞. On the other hand, if
we measure the position only up to some finite precision �x = � we can limit the disturbance
of momentum to a finite amount �p � h̄/�. By replacing precise measurements with
a bounded-measurement paradigm, e.g. WMs, counter-factual thought experiments become
experimentally accessible.

1.5. Weak values and weak measurements

ABL considered measurements between two successive IMs where the transition from a pre-
selected state |�in〉 to a post-selected state |�fin〉 is generally disturbed by the IM performed
during the intermediate time. A subsequent theoretical development arising out of the ABL
work was the introduction of the ‘weak value’ (WV) of an observable which can be probed by
a new type of measurement called the ‘weak measurement’ (WM) [5]. Part of the motivation
behind these measurements is to explore the relationship between |�in〉 and |�fin〉 by reducing
the disturbance on the system at the intermediate time. This is useful in many ways, e.g. if
a WM of Â is performed at the intermediate time t ∈ [tin, tfin] then, in contrast to the ABL
situation, the basic object in the entire interval tin → tfin for the purpose of calculating other
WVs for other measurements is the pair of states |�in〉 and |�fin〉.

1.5.1. Quantum measurements. WMs [5] originally grew out of the quantum measurement
theory developed by von Neumann [37]3. First we consider IMs of observable Â by using an
interaction Hamiltonian Hint of the form Hint = −λ(t)Q̂mdÂ, where Q̂md is an observable of
the measuring device (e.g. the position of the pointer) and λ(t) is a coupling constant which
determines the duration and strength of the measurement. For an impulsive measurement we
need the coupling to be strong and short and thus take λ(t) �= 0 only for t ∈ (t0 − ε, t0 + ε)

and set λ = ∫ t0+ε

t0−ε
λ(t) dt . We may then neglect the time evolution given by Hs and Hmd in

the complete Hamiltonian H = Hs +md +Hint. Using the Heisenberg equations of motion for
the momentum P̂md of the measuring device (conjugate to the position Q̂md), we see that P̂md

evolves according to dP̂md
dt

= λ(t)Â. Integrating this, we see that Pmd(T ) − Pmd(0) = λÂ,
where Pmd(0) characterizes the initial state of the measuring device and Pmd(T ) characterizes

3 WMs and their outcome, WVs, can be derived in all approaches to quantum measurement theory. For example,
the usual projective measurement typically utilized in quantum experiments is a special case of these WMs [45].
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(a) (b)

Figure 3. (a) With an ideal or ‘strong’ measurement at t (characterized e.g. by δPmd = λa1 

�Pmd), then ABL gives the probability of obtaining a collapse onto eigenstate a1 by propagating
〈�fin| backwards in time from tfin to t and |�in〉 forwards in time from tin to t; in addition, the
collapse caused by IM at t creates a new boundary condition |a1〉 〈a1| at time t ∈ [tin, tfin]. (b) If
a WM is performed at t (characterized e.g. by δPmd = λAw � �Pmd), then the outcome of the
WM, the WV, can be calculated by propagating the state 〈�fin| backwards in time from tfin to t and
the state |�in〉 forwards in time from tin to t; the WM does not cause a collapse and thus no new
boundary condition is created at time t.

the final state. To make a more precise determination of Â requires that the shift in Pmd, i.e.
δPmd = Pmd(T ) − Pmd(0), be distinguishable from its uncertainty, �Pmd. This occurs, e.g., if
Pmd(0) and Pmd(T ) are more precisely defined and/or if λ is sufficiently large (see figure 3(a)).
However, under these conditions (e.g. if the measuring device approaches a delta function in
Pmd), then the disturbance or back-reaction on the system is increased due to a larger Hint,
the result of the larger �Qmd

(
�Qmd � 1

�Pmd

)
. When Â is measured in this way, then any

operator Ô ([Â, Ô] �= 0) is disturbed because it evolved according to d
dt

Ô = iλ(t)[Â, Ô]Q̂md,
and since λ�Qmd is not zero, Ô changes in an uncertain way proportional to λ�Qmd.

In the Schroedinger picture, the time evolution operator for the complete system from
t = t0 − ε to t = t0 + ε is exp

{−i
∫ t0+ε

t0−ε
H(t) dt

} = exp{−iλQ̂mdÂ}. This shifts Pmd (see

figure 3(a)). If before the measurement the system was in a superposition of eigenstates of Â,
then the measuring device will also be superposed proportional to the system. This leads to
the ‘quantum measurement problem’. A conventional solution to this problem is to argue that
because the measuring device is macroscopic, it cannot be in a superposition, and so it will
‘collapse’ into one of these states and the system will collapse with it.

1.5.2. Weakening the interaction between system and measuring device. Following our
intuition (subsection 1.4) concerning disturbance and counter-factual statements, we now
perform measurements which do not disturb the system. The interaction Hint = −λ(t)Q̂mdÂ

is weakened by minimizing λ�Qmd. For simplicity, we consider λ � 1 (assuming
without lack of generality that the state of the measuring device is a Gaussian with spreads
�Pmd = �Qmd = 1). We set e−iλQ̂mdÂ ≈ 1 − iλQ̂mdÂ and consider a theorem.

Theorem 1.

Â|�〉 = 〈Â〉|�〉 + �A|�⊥〉, (1.6)

where 〈Â〉 = 〈�|Â|�〉, |�〉 is any vector in Hilbert space, �A2 = 〈�|(Â − 〈Â〉)2|�〉, and
|�⊥〉 is a state such that 〈�|�⊥〉 = 0.

Proof. To prove this theorem, we begin with A|ψ〉 = 〈A〉|ψ〉 + A|ψ〉 − 〈A〉|ψ〉 now, we set
|ψ̃⊥〉 = A|ψ〉 − 〈A〉|ψ〉, so 〈ψ̃⊥|ψ〉 = (〈ψ |A − 〈ψ |〈A〉)|ψ〉 = 〈ψ |A|ψ〉 − 〈A〉〈ψ |ψ〉 = 0
now we set |ψ⊥〉 = b|ψ̃⊥〉, where |ψ⊥〉 is normalized and b real (note that 〈ψ |ψ⊥〉 = 0). so
A|ψ〉 = 〈A〉|ψ〉 + b|ψ⊥〉. Now we multiply from the left by 〈ψ⊥|, and we get 〈ψ⊥|A|ψ〉 = b.
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Now we can see that 〈ψ |A2|ψ〉 = 〈ψ |A(〈A〉|ψ〉 + b|ψ⊥〉) = 〈ψ |(〈A〉2|ψ〉 + b〈A〉|ψ⊥〉 +
bA|ψ⊥〉) = 〈A〉2 + b〈ψ |A|ψ⊥〉 so 〈A2〉 − 〈A〉2 = b〈ψ |A|ψ⊥〉 = b2 which means that
b =

√
〈A2〉 − 〈A〉2 = �A and the result A|ψ〉 = 〈A〉|ψ〉 + �A|ψ⊥〉 is proved. �

Using this, we can then show that before the post-selection, the system state is

e−iλQ̂mdÂ|�in〉 = (1 − iλQ̂mdÂ)|�in〉 = (1 − iλQ̂md〈Â〉)|�in〉 − iλQ̂md�Â|�in⊥〉 (1.7)

Using the norm of this state ‖(1 − iλQ̂mdÂ)|�in〉‖2 = 1 + λ2Q̂2
md〈Â2〉, the probability of

leaving |�in〉 unchanged after the measurement is

1 + λ2Q̂2
md〈Â〉2

1 + λ2Q̂2
md〈Â2〉 −→ 1 (λ → 0), (1.8)

while the probability of disturbing the state (i.e. of obtaining |�in⊥〉) is

λ2Q̂2
md�Â

2

1 + λ2Q̂2
md〈Â2〉 −→ 0 (λ → 0) (1.9)

The final state of the measuring device is now a superposition of many
substantially overlapping Gaussians with probability distribution given by Prob(Pmd) =∑

i |〈ai |�in〉|2 exp
{− (Pmd−λai )

2

2�P 2
md

}
. This sum is a Gaussian mixture, so it can be approximated

by a single Gaussian �̃fin
md(Pmd) ≈ 〈Pmd| e−iλQ̂md〈Â〉∣∣�in

md

〉 ≈ exp
{− (Pmd−λ〈Â〉)2

�P 2
md

}
centred on

λ〈Â〉.

1.5.3. Adding a post-selection to the weakened interaction: weak values and weak
measurements. Appendix A and [54] show how to obtain information from a quantum
measurement without causing a disturbance to the state. Having thereby established a
new measurement paradigm—information gain without disturbance—it is fruitful to inquire
whether this type of measurement reveals new values or properties. With WMs (which involve
adding a post-selection to this ordinary—but weakened—von Neumann measurement), the
measuring device registers a new value, the WV. As an indication of this, we insert a complete
set of states {|�fin〉j } into the outcome of the weak interaction of subsubsection 1.5.2, i.e. into
the expectation value 〈Â〉:

〈Â〉 = 〈�in|
∑

j

|�fin〉j 〈�fin|j
 Â|�in〉 =

∑
j

|〈�fin|j�in〉|2 〈�fin|j Â|�in〉
〈�fin|j�in〉 . (1.10)

If we interpret the states |�fin〉j as the outcomes of a final IM on the system (i.e. a post-
selection) then performing a WM (e.g. with λ�Qmd → 0) during the intermediate time
t ∈ [tin, tfin] provides the coefficients for |〈�fin|j�in〉|2 which gives the probabilities Prob(j)

for obtaining a pre-selection of 〈�in| and a post-selection of |�fin〉j . The intermediate WM

does not disturb these states and the quantity Aw(j) ≡ 〈�fin|j Â|�in〉
〈�fin|j �in〉 is the WV of Â given a

particular final post-selection 〈�fin|j . Thus, from the definition 〈Â〉 = ∑
j Prob(j)Aw(j), one

can think of 〈Â〉 for the whole ensemble as being constructed out of sub-ensembles of pre- and
post-selected states in which the WV is multiplied by a probability for a post-selected state.
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Indeed, the WV arises naturally from a weakened measurement with post-selection:
taking λ � 1, the final state of measuring device in the momentum representation becomes

〈Pmd|〈�fin| e−iλQ̂mdÂ|�in〉
∣∣�MD

in

〉 ≈ 〈Pmd|〈�fin|1 + iλQ̂mdÂ|�in〉
∣∣�MD

in

〉
≈ 〈Pmd|〈�fin|�in〉

{
1 + iλQ̂

〈�fin|Â|�in〉
〈�fin|�in〉

} ∣∣�MD
in

〉
≈ 〈�fin|�in〉〈Pmd| e−iλQ̂Aw

∣∣�MD
in

〉
→ 〈�fin|�in〉 exp{−(Pmd − λAw)2},

where Aw = 〈�fin|Â|�in〉
〈�fin|�in〉 . (1.11)

The final state of the measuring device is almost un-entangled with the system and is shifted
by a very unusual quantity, the WV, Aw, which is not in general an eigenvalue of Â. We have
used such limited disturbance measurements to explore many paradoxes (see, e.g. [11, 29]).
A number of experiments have been performed to test the predictions made by WMs and
results have proven to be in very good agreement with theoretical predictions [55–59]. Since
eigenvalues or expectation values can be derived from WVs [1], we believe that the WV is
indeed of fundamental importance in QM. In addition, the WV is the relevant quantity for all
generalized weak interactions with an environment, not just measurement interactions. The
only requirement being that the 2-vectors, i.e. the pre- and post-selection, are not significantly
disturbed by the environment.

2. Pre- and post-selected paradoxes and contextuality

Now that we have completed our review, we will spend much of this paper showing how to
utilize pre- and post-selection to assign definite values to observables in new and surprising
ways. We do this for systems that, from the perspective of HVTs, are ‘primed to exhibit’
contextuality. We first show that these new assignments can be verified individually by
performing IMs. While this assignment suggests novel connections between what could
be said about the state before the IM and after, in general, the IM creates a disturbance
and thus creates an uncertain relationship between the state before and after, reflecting Bub
and Brown’s [44] concern ‘ensembles which have been pre-selected and post-selected via
an arbitrary intervening measurement . . . are not well defined without specification of the
intervening measurement’. Indeed, we show [29] how measurement disturbance can arise
in new ways when IMs are performed on PPS systems, even, surprisingly, for commuting
observables.

However, in contrast to IMs, ensembles that are pre- and post-selected are well defined for
any WM or WV, and therefore become useful for probing contextuality at an empirical level.
We use such limited disturbance measurements (WMs) to experimentally test the paradoxes
implied by counter-factual statements in situations involving contextuality. For example, we
apply this new approach to several specific examples (the three-box paradox subsection 2.1,
Mermin’s 4D example section 3, GHZ section 4) as well as a general proof for all logical pre-
and post-selected paradoxes subsection 2.2. Although the outcomes of WMs suggest a story
which appears to be even stranger than the original one (non-classical WVs, etc), the situation
is in fact far better. WVs obey a simple, intuitive and, most importantly, self-consistent logic.
This contrasts with the logic of the original counter-factual statements which is not internally
self-consistent and leads into paradoxes.
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2.1. Weak values and the three-box paradox

Before considering the general proofs, we return first to the three-box paradox. In
subsection 1.3, we discussed eight different vectors that were relevant for constructing the
paradox: the pre-selection |�in〉 = 1/

√
3(|A〉 + |B〉 + |C〉), the post-selection |�fin〉 =

1/
√

3(|A〉 + |B〉 − |C〉), and six possible intermediate measurements which give rise to
the paradoxical inferences. The BKS conditions discussed in the introduction, namely the
fact that �ψ can be decomposed into many different basis sets, and the value that V �ψ assigns
must be independent of the particular basis, can be represented pictorially by assigning ‘no’s
(black circles), ‘yes’s (white circles) and connecting lines as orthogonality relations. Leifer
and Spekkens demonstrated a novel direct connection between each of the eight vectors in
the three-box paradox and the eight vectors in the Clifford/BKS-proof of contextuality: it is
readily seen ([25]’s figure) that no HVT assignment can be made that is consistent with the
orthogonality relations, since in order for noncontextuality to hold, no two orthogonal pairs
can be white, which is violated by the central two circles.

Because IMs are used, the six possible measurements during the intermediate time are
‘treated as counter-factual alternatives in the proof of contextuality’ [24]. Although these have
no physical meaning, they are a good guide to interesting physical situations in terms of WVs
and WMs. For example, we can calculate the WVs of the number of particles in each box:

(|A〉〈A|)w = 〈�fin|A〉〈A|�in〉
〈�fin|�fin〉 =

1√
3
{〈A| + 〈B| − 〈C|}|A〉〈A| 1√

3
{|A〉 + |B〉 + |C〉}

1√
3
{〈A| + 〈B| − 〈C|} 1√

3
{|A〉 + |B〉 + |C〉}

=
1
3 1 · 1

1
3 (1 + 1 − 1)

= 1.

We can more easily ascertain the WVs without calculation due to the following theorems.

Theorem 2. The sum of the WVs is equal to the WV of the sum

if (P̂A)w = (P̂B + P̂C)w then (P̂A)w = (P̂B)w + (P̂C)w (2.1)

Proof. From linearity 〈�fin|P̂B+P̂C |�in〉
〈�fin|�in〉 = 〈�fin|P̂B |�in〉

〈�fin|�in〉 + 〈�fin|P̂C |�in〉
〈�fin|�in〉 . �

Theorem 3. If a single IM of an observable P̂A is performed between the pre- and post-
selection, then if the outcome is definite (e.g. Prob(P̂A = 1) = 1) then the WV is equal to this
eigenvalue (e.g. (P̂A)w = 1) [6].

Proof. Given that P̂A = ∑
n an|αn〉〈αn|, if an eigenvalue, e.g. P̂A = an, is obtained

with certainty, then for n �= m, P̂A ≡ |αm〉〈αm| = 0 because the probability of obtaining
another eigenvalue by ABL is ∝ 〈�fin|αm〉〈αm|�in〉 = 0. In this case, the weak value
(P̂A)w = (|αm〉〈αm|)w = 〈�fin|αm〉〈αm|�in〉

〈�fin|�in〉 = 0. In addition,
∑

m
〈�fin|αm〉〈αm|�in〉

〈�fin|�in〉 = 1 because∑
m |αm〉〈αm| = 1. But since 〈�fin|αm〉〈αm|�in〉 = 0 for n �= m, the only term left is n.

Therefore, the weak value is 1, the same as the ideal value. �

This theorem also provides a direct link to the counter-factual statements (subsection 1.4)
because all counter-factual statements which claim that something occurs with certainty, and
which can actually be experimentally verified by separate IMs, continue to remain true when
tested by WMs. However, given that WMs do not disturb each other, all these statements can
be measured simultaneously.

Applying theorem 3 to the three boxes, we ascertain the following WVs with certainty

(P̂A)w = 1, (P̂B)w = 1, P̂total = (P̂A + P̂B + P̂C)w = 1. (2.2)
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Using theorem 2, we also obtain

(P̂C)w = 〈�fin|P̂total − P̂A − P̂B|�in〉
〈�fin|�in〉

= (P̂A + P̂B + P̂C)w − (P̂A)w − (P̂B)w = −1. (2.3)

This surprising theoretical prediction of TSQM has been verified experimentally using photons
[34]. What interpretation should be given to (P̂C)w = −1? Any WM which is sensitive to the
projection operator P̂C will register the opposite effect from those cases in which the projection
operator is positive, e.g. a WM of the amount of charge in box C in the intermediate time will
yield a negative charge (assuming it is a positively charged particle). For numerous reasons
[29, 50], we believe the most natural interpretation is: there are −1 particles in box C.

2.2. Hidden variable theories, pre- and post-selection and value definiteness

In the traditional constructions of the proofs of contextuality [23], the HVT had to first
assign a definite, deterministic value to all possible observables of a system (an assumption
called ‘value definiteness’). Only after this step can noncontextuality be defined. A recent
important development was demonstrated by Spekkens [48] who showed that noncontextuality
could be defined for stochastic HVTs, thereby demonstrating that value definiteness and
noncontextuality are distinct assumptions4. Notwithstanding these important results, we will
consider the traditional treatment which requires value definiteness. The reason, as will be
seen below, is that theorem 3 requires the analogue of value definiteness within ABL and PPS
(i.e. in a similar spirit as is used within the subject of HVTs). We will use theorem 3 in a new
notion called ‘quantum contextuality’ (defined below).

A ‘logical PPS-paradox’ is defined as [25] ‘sets of projectors for which an ABL probability
assignment violates the algebraic constraints, while every projector receives probability 0 or 1’.
In [29], it was first pointed out and extensively discussed and later proven by Leifer and
Spekkens [25] that there is a related proof of contextuality for ‘logical PPS-paradoxes’.

Theorem 4. ‘For every logical PPS-paradox with non-orthogonal pre- and post-selection
projectors, there is an associated proof of the impossibility of an (measurement noncontextual)
HVT that is obtained by considering all the measurements defined by the PPS paradox—
the pre-selection measurement, the post-selection measurement and the alternative possible
intermediate measurements—as alternative possible measurements at a single time’ [25].

Leifer and Spekkens [24] also argue that ‘ . . . we did not show that a logical PPS-paradox
is itself a proof of contextuality’ because ‘the measurements defined by the PPS-paradox—

4 In [48], Spekkens extends BKS to operational theories, arbitrary preparations, transformations and unsharp
measurements and to stochastic or indeterministic ontological models. Quantum states are given as probability
distributions µ over HVTs λ, such that

∫
	

µ(λ) dλ = 1, where 	 is the set of possible HVTs and measurements
are characterized by idempotent indicator functions χM

j : 	 → {0, 1}, such that
∑

j χM
j (λ) = 1. The probability

of obtaining an outcome j for a random variable X when a measurement M is performed on a system in µ then is
pµ(XM = j) = ∫

	
χM

j (λ)µ(λ) dλ. In addition, a transition from ω to some other HVT state λ could result from the

measurement process [24], and this is modelled by a transition probability DM
j (λ, ω) such that

∫
	

DM
j (λ, ω) dλ = 1.

This approach to HVTs may then be applied [25] to ABL:

pHVT(XM = k|Apre, Apost, M) =
∫
	

χpost(λ)�M
k (λ, ω)µpre(ω)dω dλ∫

	
χpost(λ)(�M

k (λ, ω) + �M
¬k(λ, ω))µpre(ω) dω dλ

.

WMs and WVs can also be described in this language (the usual projective measurement typically utilized in quantum
experiments is a special case of WMs [45]). In the HVT language of [25], logical PPS-paradox occurs if pHVT = 1 for
several incompatible situations, e.g. if

∫
	

χpost(λ)�M
¬k(λ, ω)µpre(ω) dω dλ = 0. Nevertheless [25] assume ‘outcome

determinism’, i.e. ‘the probability assigned to every projector for a particular ontic state is either 0 or 1’.
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the pre-selection, the post-selection, and the alternative possible intermediate measurements,’
while normally considered as ‘temporal successors,’ within the proof of contextuality, ‘must
be treated as counter-factual alternatives’. These counter-factual elements in the proof are
valid only if we perform IMs separately; they do not hold if IMs are made simultaneously.
This indeed is the essence of how counter-factual paradoxes are usually avoided and is also the
same reason that BKS is generally thought not to be directly testable, i.e. BKS considers sets
of non-commuting operators (which are considered in a counter-factual sense). Indeed, Leifer
and Spekkens correctly argue that ‘this distinction is critical, since an earlier measurement can
cause a disturbance to the ontic state that is monitored by a later measurement’ [24].

2.3. Quantum contextuality

However, WVs and WMs (instead of the IMs used in theorem 4) give a different meaning to
‘alternative possible measurements at a single time’. Although these alternatives are usually
regarded as counter-factual, they will all be true simultaneously with WVs which can be probed
empirically—to some extent—by WMs because theorem 3 provides a direct link with all the
counter-factual alternatives in theorem 4. Theorem 3 says that all counter-factual statements
which claim that something occurs with certainty, and which can actually be experimentally
verified by separate ideal experiments, continue to remain true simultaneously as WVs. We
will first emphasize the purely theoretical aspect of WVs as distinct from attempts to measure
them with WMs. Although WVs require an ensemble in order to be probed empirically
with WMs, we can consider WVs by themselves as a general, non-statistical and robust
mathematical property of every individual PPS system (see appendix B).

As a result of this new empirical access through WMs, rather than focusing on HVTs,
we will be interested in the relevance of contextuality for QM itself. As a consequence, we
will define a new concept called ‘quantum contextuality’ which is directly applicable to QM.
Although ‘quantum contextuality’ is not based on HVTs, it does follow the spirit of their
definition.

Quantum contextuality. For any initial quantum state which exhibits a breakdown of
noncontextuality in the associated HVT for a certain set of operators (i.e. for which
ABL assigns definite values of 0/1), one can find at least one post-selected state
which will show how the function composition rule (i.e. sum and product rules) is
violated.

This definition focuses our inquiries into the specific conditions under which the function
composition rule (1.1) is violated. That is, ‘quantum contextuality’ refers to those situations
where the function composition is satisfied for one boundary condition (i.e. the pre- or post-
selection) but not for both the pre- and the post-selection.

2.4. Logical PPS-paradoxes imply quantum contextuality through weak values

We are now able to prove the following.

Theorem 5. Logical PPS-paradoxes imply ‘quantum contextuality’ through WVs.

Proof. The proof follows [25] but circumvents the counter-factual status of measurements
that are temporal successors by using theorem 3 which allows us to state that all counter-
factual statements which maintain the occurrences of an outcome with certainty will all be
true simultaneously when they are measured weakly. Theorem 3 is applicable to the precise
elements utilized in the contextuality proof [25]. In addition, given that WVs are by definition
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independent of the type of WM and given equation (1.10), and since WVs can violate the
algebraic conditions (the product rule) required for BKS and noncontextual HVTs [24], we
have now proven that logical PPS-paradoxes which assign definite probabilities (of 0 or 1)
via ABL, are in fact proofs of contextuality if all the ‘alternative possible intermediate
measurements’ are performed weakly. �

In addition, for any logical PPS-paradox, we can always find a post-selection which can
empirically manifest non-classical WVs as implied in the definition of quantum contextuality.
To see this, consider that for every two commuting projection operators, we can always find a
unitary operation to obtain a representation 1 ≡ |1〉〈1| and 2 ≡ |2〉〈2|. By way of example,
in three dimensions, the most general pre-selected vector can always be written in the form

|�in〉 = a|1〉 + b|2〉 + c|3〉. (2.4)

Therefore, there is always a post-selected vector

|�fin〉 = 1

a
|1〉 +

1

b
|2〉 − 1

c
|3〉 (2.5)

such that (1)w = 1 and (2)w = 1. Using (12)w = 0 and 1 + 2 + 3 = 1,
we obtain the non-classical WV (3)w = −1. Similarly, in four dimensions, the most
general pre-selected vector is |�in〉 = a|1〉 + b|2〉 + c|3〉 + d|4〉 and the post-selected vector
|�fin〉 = 1

a
|1〉+ 1

b
|2〉+ 1

c
|3〉− 2

d
|4〉 will reveal the non-classical WV. This continues in the same

way for any dimension.
We will argue (section 5) that these considerations mitigate the attempt to explain these

PPS ‘paradoxes’ as a result of disturbance (since there is no disturbance with WMs) and have
strengthened [25] the connection between these ‘paradoxes’ and contextuality. The following
two sections will explore worked examples of these new considerations in higher dimensions.

3. Pre- and post-selection and contextuality in four dimensions

In the three-box paradox, the product of observables was always definite, i.e. P̂AP̂B = 0 and
the proof of contextuality was state dependent. In this section, we consider a slightly different
situation (4D BKS nonets) in which the product of observables can give two different values.
Except for this difference, this 4D BKS nonet example is similar to the three-box paradox in that
we shall also analyse them in terms of PPSs thereby revealing surprising predictions for IMs
and WMs and will demonstrate the identical issues of diagonal-PPS measurements, violation
of the product rule, contextuality and WMs which cannot be explained by a noncontextual
HVT.

3.1. Review of Mermin’s 4D BKS theorem

We consider Mermin’s version of BKS with a set of nine observables. It is intuitive [27]
to represent all the ‘functional relationships between mutually commuting subsets of the
observables,’ i.e. V �ψ(F {Â}) = F {V �ψ(Â)}, by drawing them in figure 4 and arranging them so
that all the observables in each row (and column) commute with all the other observables in
the same row (or column).

Individually, each of the nine observables depicted in figure 4 has eigenvalues ±1. In
addition, equation (1.1) requires that the value assigned to the product of all three observables
in any row or column must obey the same identities that the observables themselves satisfy,
i.e. the product of the values assigned to the observables in each oval yields a result
of +1 except in the last column which gives −1. (The value assignments are given by
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V �ψ
(
σ̂ 1

x

) = 〈
σ̂ 1

x

⊗
I 2
〉
, V �ψ

(
σ̂ 2

x

) = 〈
I 1 ⊗ σ̂ 2

x

〉 · · · V �ψ
(
σ̂ 1

x

) = 〈
σ̂ 1

z

⊗
σ̂ 2

z

〉
). Computing column 3

of figure 4, {
σ̂ 1

x σ̂ 2
x

}{
σ̂ 1

y σ̂ 2
y

}{
σ̂ 1

z σ̂ 2
z

} = σ̂ 1
x σ̂ 2

x σ̂ 1
y︸ ︷︷ ︸

commute so↪→

σ̂ 2
y σ̂ 1

z σ̂ 2
z = σ̂ 1

x σ̂ 1
y︸ ︷︷ ︸

=iσ̂ 1
z

σ̂ 2
x σ̂ 2

y︸ ︷︷ ︸
=iσ̂ 2

z

σ̂ 1
z σ̂ 2

z

= iσ̂ 1
z iσ̂ 2

z σ̂ 1
z︸ ︷︷ ︸

commute so↪→

σ̂ 2
z = iσ̂ 1

z iσ̂ 1
z σ̂ 2

z σ̂ 2
z = −1. (3.1)

Computing the product of the observables in the third row, i.e.,{
σ̂ 1

x σ̂ 2
y

}{
σ̂ 2

x σ̂ 1
y

}{
σ̂ 1

z σ̂ 2
z

} = σ̂ 1
x σ̂ 2

y σ̂ 2
x︸ ︷︷ ︸

=−iσ̂ 2
z

σ̂ 1
y

{
σ̂ 1

z σ̂ 2
z

} = σ̂ 1
x σ̂ 1

y︸ ︷︷ ︸
=iσ̂ 1

z

{−iσ̂ 2
z

}{
σ̂ 1

z︸ ︷︷ ︸
commute so↪→

σ̂ 2
z

}
= iσ̂ 1

z σ̂ 1
z︸ ︷︷ ︸

=i

{−iσ̂ 2
z

}{
σ̂ 2

z

}︸ ︷︷ ︸
=−i

= +1. (3.2)

If the product rule is applied to the value assignments made in the rows, then

V �ψ
(
σ̂ 1

x

)
V �ψ
(
σ̂ 2

x

)
V �ψ
(
σ̂ 1

x σ̂ 2
x

) = V �ψ
(
σ̂ 2

y

)
V �ψ
(
σ̂ 1

y

)
V �ψ
(
σ̂ 1

y σ̂ 2
y

)
= V �ψ

(
σ̂ 1

x σ̂ 2
y

)
V �ψ
(
σ̂ 2

x σ̂ 1
y

)
V �ψ
(
σ̂ 1

z σ̂ 2
z

) = +1 (3.3)

while the column identities require

V �ψ
(
σ̂ 1

x

)
V �ψ
(
σ̂ 2

y

)
V �ψ
(
σ̂ 1

x σ̂ 2
y

) = V �ψ
(
σ̂ 2

x

)
V �ψ
(
σ̂ 1

y

)
V �ψ
(
σ̂ 2

x σ̂ 1
y

) = +1

V �ψ
(
σ̂ 1

x σ̂ 2
x

)
V �ψ
(
σ̂ 1

y σ̂ 2
y

)
V �ψ
(
σ̂ 1

z σ̂ 2
z

) = −1
(3.4)

However, it is easy to show that the nine numbers V �ψ cannot satisfy all six constraints:
multiplying all nine values together gives two different results, a +1 when it is done row by
row and a −1 when it is done column by column

V �ψ
(
σ̂ 1

x

)
V �ψ
(
σ̂ 2

x

)
V �ψ
(
σ̂ 1

x σ̂ 2
x

) · · · V �ψ
(
σ̂ 1

z σ̂ 2
z

) = +1 (3.5)

V �ψ
(
σ̂ 1

x

)
V �ψ
(
σ̂ 2

y

)
V �ψ
(
σ̂ 1

x σ̂ 2
y

) · · · V �ψ
(
σ̂ 1

z σ̂ 2
z

) = −1. (3.6)

There obviously is no consistent solution to equations (3.6) and (3.5) since they contain
the same set of numbers, simply ordered differently. Therefore the values assigned to
the observables cannot obey the same identities that the observables themselves obey,
V �ψ(F {Â}) �= F {V �ψ(Â)}, and an HVT would have to assign values to observables in a
way that depended on the choice of which of two mutually commuting sets of observables that
were also chosen to measure, i.e. the values assigned are contextual.

3.2. ABL, VAA and BKS nonets

Following Vaidman, Albert, and Aharonov (VAA) [4], Mermin showed how to assign a definite
value to a single measurement of any one of the nine observables of a BKS nonet [26]. He then
generalized this to a definite assignment to any one of 16 observables from the sets of nonets
and showed that this assignment cannot be done if one attempts to measure (or ascertain) two or
more of the observables belonging to the nonets. He left open the question as to the physical
reason for this, stating ‘I find this intriguing’ [26]. To address this, we present a physical
reason to demonstrate why the VAA scheme cannot be applied to two or more measurements
by showing that the two measurements interfere with each other given the necessary PPSs.
This can be seen to be a consequence of TSQM: some assignments of eigenvalues to operators
are based on just one of the two vectors (i.e. either the pre- or the post-selected vector) while
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Figure 4. 4D BKS example.

(a) (b)

Figure 5. PPS states for Mermin example.

some assignments of eigenvalues are based on both vectors (i.e. both the pre-selected and the
post-selected vectors—what we call diagonal-PPS). In this picture, it is the utilization of more
than one PPS and the subsequent interference between them that explains the violation of the
product rule and thus the physical source of the ‘contextuality’. When assignments are not
made in the diagonal-PPS sense, then sets of commuting observables which are determined
entirely by just one vector satisfy the BKS function condition V �ψ(F {Â}) = F {V �ψ(Â)}. Sets
of commuting observables which are assigned values in the diagonal-PPS sense by using
information from both vectors do not satisfy the BKS function condition because they violate
the product rule, and can disturb each other.

3.2.1. Ascertaining the results of any one of the nine observables. We begin our analysis by
considering specific examples of PPS configurations. We then utilize ABL [2] and show that
choosing different post-selections changes the triplet of observables that violate the product
rule. Consider first a pre-selection of σ̂ 1

x = 1 and σ̂ 2
x = 1 and a post-selection of σ̂ 1

y = 1 and
σ̂ 2

y = 1 (see figure 5(a)). In this case, it is easy to see that we can ascertain with certainty any
one of the following values: σ̂ 1

x = 1, σ̂ 2
x = 1, σ̂ 1

y = 1 or σ̂ 2
y = 1. We also know that we will

obtain definite values of +1 if we measure any one of the following products of observables:
σ̂ 1

x σ̂ 2
x = 1 and σ̂ 1

y σ̂ 2
y = 1, so we must also obtain σ̂ 1

x σ̂ 2
x σ̂ 1

y σ̂ 2
y = +1:〈

σ̂ 1
x σ̂ 2

x σ̂ 1
y σ̂ 2

y

〉 = 〈
σ̂ 1

y = 1
∣∣〈σ̂ 2

y = 1
∣∣σ̂ 1

x σ̂ 2
x σ̂ 1

y σ̂ 2
y

〉∣∣σ̂ 1
x = 1

〉|σ̂ 2
x = 1

〉 = +1. (3.7)

In addition, we obtain the same results if we switch the sequence of σ̂ 1
x σ̂ 2

x and σ̂ 1
y σ̂ 2

y because
they commute. Any one of the other observables in figure 4 (i.e. σ̂ 1

x σ̂ 2
y and σ̂ 2

x σ̂ 1
y ) can also be

ascertained with certainty given this PPS. Finally, from the product of the three observables
in column 3

({
σ̂ 1

x σ̂ 2
x

}{
σ̂ 1

y σ̂ 2
y

}{
σ̂ 1

z σ̂ 2
z

} = −1 and
{
σ̂ 1

x σ̂ 2
x

}{
σ̂ 1

y σ̂ 2
y

} = +1
)
, we can deduce that
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(a) (b)

Figure 6. Time sequence of PPS measurements for Mermin example.

σ̂ 1
z σ̂ 2

z = −1. Similar statements can be made for other PPSs. For example, consider the
pre-selection σ̂ 1

x = 1 and σ̂ 2
y = 1 and a post-selection of σ̂ 1

y = 1 and σ̂ 2
x = 1 (see figure 5(b)).

In this case, the measurement σ̂ 1
x σ̂ 2

y σ̂ 2
x σ̂ 1

y = +1, and we can deduce from the third row that{
σ̂ 1

z σ̂ 2
z

} = +1.
Thus, given just one PPS, any single observable can be assigned a definite value, even

though σ̂ 1
z σ̂ 2

z is assigned different values in different PPS. It is precisely because of this
connection between particular PPSs and different values for σ̂ 1

z σ̂ 2
z that the issue of contextuality

arises when we consider products of these observables.

3.2.2. Ascertaining the results of products of the nine observables:. In this section, we ask
how many of the products of the nine observables in figure 4 can be ascertained together with
certainty. For example, as stated in the previous section, the outcome for the product of the
first two observables in column 3 of figure 4 with the PPS of figure 5(a) is σ 1

x σ 2
x σ 1

y σ 2
y = +1.

However, if we measure the operators corresponding to the first two observables of row 3 in
figure 4, i.e. σ̂ 1

x σ̂ 2
y σ̂ 2

x σ̂ 1
y , given this particular PPS shown in figure 5(a), then the sequence of

measurements interferes with each other (as represented by the slanted ovals in figure 7(a)).
To see this, consider that σ̂ 1

x σ̂ 2
y σ̂ 2

x σ̂ 1
y corresponds to the sequence of measurements represented

in figure 8(a). While the pre-selection of particle 2 is σ̂ 2
x = 1 at tin, the next measurement

after the pre-selection at t2 is for σ̂ 2
y and only after that a measurement of σ̂ 2

x is performed
at t3. Thus, there is no guarantee that the σ̂ 2

x measurement at t3 will give the same value
as the pre-selected state of σ̂ 2

x = 1 or that the σ̂ 2
y measurement will give the same value as

the post-selected state of σ̂ 2
y = 1. In TSQM, this is due to the disturbance of the 2-vector

boundary conditions which is created by the IM: the initial pre-selected vector σ̂ 2
x = 1 from

tin is ‘destroyed’ when the σ̂ 2
y measurement at time t2 is performed and therefore cannot

inform the later σ̂ 2
x measurement at time t3. In other words, with the particular PPS given in

figures 5(a) and 6(a), the operator, σ̂ 1
x σ̂ 2

y σ̂ 2
x σ̂ 1

y depends on information from both the pre-
selected vector σ̂ 1

x = 1, σ̂ 2
x = 1 and the post-selected vector σ̂ 1

y = 1, σ̂ 2
y = 1 in a diagonal-

PPS sense. We call this diagonal-PPS because a line connecting σ̂ 1
x (t1) with σ̂ 2

x (t3) will be
diagonal or will cross the line connecting σ̂ 2

y (t2) with σ̂ 1
y (t4), where tin < t1 < t2 · · · < tfin (see

figure 7(a)).
These results can also be seen in an actual measurement situation, we consider interaction

Hamiltonians with coupling terms σ̂ 1
x δ(t − t1), σ̂

2
x δ(t − t2), σ̂

2
y δ(t − t2) and σ̂ 1

y δ(t − t1):〈
σ̂ 1

y = 1
∣∣〈σ̂ 2

y = 1
∣∣ eiQ̂1σ̂

1
x σ̂ 2

x eiQ̂2σ̂
1
y σ̂ 2

y

∣∣σ̂ 1
x = 1

〉∣∣σ̂ 2
x = 1

〉
= 〈

σ̂ 1
y = 1

∣∣〈σ̂ 2
y = 1

∣∣ eiQ̂2σ̂
1
y σ̂ 2

y eiQ̂1σ̂
1
x σ̂ 2

x

∣∣σ̂ 1
x = 1

〉∣∣σ̂ 2
x = 1

〉 = 1. (3.8)
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(a) (b)

Figure 7. (a) Measurement of σ̂ 1
x σ̂ 2

y σ̂ 2
x σ̂ 1

y is diagonal. (b) Measurement of σ̂ 1
x σ̂ 2

x σ̂ 1
y σ̂ 2

y is diagonal.

(a) (b)

Figure 8. Products of observables that are not disturbed. (a) Given the PPS of figure 2(a). (b) Given
the PPS of figure 2(b).

Since eiQ̂1σ̂
1
x σ̂ 2

x commutes with eiQ̂2σ̂
1
y σ̂ 2

y , they can be interchanged and thus the same outcome of
+1 is obtained. However, for the other observables

〈
σ̂ 1

y = 1
∣∣〈σ̂ 2

y = 1
∣∣ eiQ̂1σ̂

1
x σ̂ 2

y eiQ̂2σ̂
1
y σ̂ 2

x

∣∣σ̂ 1
x = 1

〉∣∣σ̂ 2
x = 1

〉
the opposite eigenvalue is obtained (even though they commute) i.e. σ̂ 1

x σ̂ 2
y σ̂ 2

x σ̂ 1
y will

give an outcome of −1 given the PPS of figure 6(a) even though separately σ̂ 1
x σ̂ 2

y = +1 and
σ̂ 2

x σ̂ 1
y = +1. This is thus a violation of the product rule (see figure 7(a)). This diagonal-PPS

phenomenon can be generalized to functions that are polynomials of products of observables
with the proper ordering (i.e. no mixing or sandwiching).

To summarize this sub-section, given the PPS of figure 7(a), the subset of observables
circled in figure 8(a) (and the products of those circled observables) can be assigned eigenvalues
in a way that satisfies the function relation requirement equation (1.1). But, the product of
the other observables (e.g. σ̂ 1

x σ̂ 2
y and σ̂ 2

x σ̂ 1
y ) can only be ascertained (given this particular

PPS) using information from both the pre- and post-selected vector in a diagonal sense (see
figure 7(a)), and will thus violate the product rule. With the PPS of figure 7(b), the subset in
figure 8(b) (and the relevant products of observables) can be assigned eigenvalues in a way
that satisfies the function relation requirement equation (1.1). But, the product of the other
observables σ̂ 1

x σ̂ 2
x and σ̂ 1

y σ̂ 2
y , i.e. σ̂ 1

x σ̂ 2
x σ̂ 1

y σ̂ 2
y violates the function rule equation (1.1).

3.2.3. Ascertaining the results of any one of 16 observables through the generalized state.
As was explained in subsubsection 3.2.1, definite results for any one of the intermediate
measurements can be obtained for several different PPSs which were complete measurements
(and thus describable by a wavefunction). In addition, some triplets (products of observables)
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Figure 9. Generalized state: superpositions of 2-vectors given by equation (3.11).

can also be ascertained (see figure 8) given a particular pre- or post-selection. However,
for the most general setup considered in this section, no two products of observables can be
ascertained. The general setup considers superpositions of these PPSs. In fact, this is required
in order to ascertain any one of the 16 observables in Mermin’s successful generalization
of VAA (it is also required to ascertain any one of the nine for general PPSs). Following
VAA [4], Mermin showed that the way that any one of the 16 values of the 7 BKS nonets
(e.g. figure 4 is one of them, the others given by σνσµ) can be ascertained with certainty is
by entangling the two-particle system representing the 4D BKS nonet (represented by the
pre- and post-selection of figures 5(a) and (b), etc, and labelled as |i〉) with another system,
i.e. an ancilla (represented here by |�i〉 and |�i〉). The nonet is prepared at tin by correlating
it with a set of states of an ancilla:

|A〉 =
∑

i

1√
N

|�i〉|i〉. (3.9)

Then the ancilla is ‘guarded’ so there are no interactions with the ancilla during the time
(tin, tfin). At tfin we post select on the particle and ancilla and obtain the state

|	〉 = 1√
N

∑
i

|�i〉|i〉. (3.10)

If we are successful in obtaining this state for the post-selection, then the state of the system
is described in the intermediate time by the entangled state (see figure 9) [6, 9],

� =
∑

i

αi〈�i ||�i〉. (3.11)

For general PPSs, we use multiple sets of boundary conditions given by figures 5(a)
and (b), etc, to get an entangled state represented by figure 10 (where for simplicity we have
taken the states of the ancilla to be an orthonormal set, fµ). Mermin then presented an elegant
method to determine the states of the ancilla necessary to produce the effect: he selected a
definite representation for the two-particle spins, performed a projection, P̂, onto the subspace
given by the nonet and solved under rotation for the state of the ancilla. That is, 〈	|P̂|A〉 = 0
for ‘all but a single one of the projections associated with . . . ’ [26] the observable of the nonet
that is to be ascertained with certainty.

As Mermin proved, all the four components of this generalized state are necessary (i.e.
we only determine a Bell state at tfin on the ancilla rather than making a projection onto any
given component fµ) to ascertain a definite answer to any one of the individual observables.

3.2.4. A physical reason for restrictions on these assignments. We have suggested a physical
reason based on TSQM and PPS for the two different values for σ̂ 1

z σ̂ 2
z . This points to a physical
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Figure 10. Generalized state for BKS nonets.

reason why no two measurements can be ascertained with certainty in the intermediate5

time: all sets of boundary conditions are needed (those corresponding to both figures 5(a)
and (b), etc) in order to ascertain with certainty the value of any one of the 16 observables,
as represented by figure 10. However, when the first observable is ascertained, then it will
depend on both the pre- and the post-selection measurements (i.e. it will be diagonal-PPS)
in two of the four components of the generalized state (see subsubsection 3.2.2) and will
collapse the entire configuration onto a subset of the PPSs, thereby disturbing the terms of
the generalized state. Given any pair of measurements, there will always be a diagonal-PPS
situation when all the four components of the generalized state are considered. This can
be seen by comparing figures 8(a) and (b) and noting that any two observables will not be
circled in both. Therefore, since we cannot be sure that the entire setup (see figure 10) is not
disturbed, we cannot ascertain with certainty the outcome for any one of the 16 observables
for the second measurement. Furthermore, this arrangement is the maximal correlation that
can be performed (i.e. the 4D state of two spins can be maximally correlated to another 4D
system as performed here), and thus we cannot create an even more sophisticated situation
with additional ancillas. We have thus given a physical picture for Mermin’s ‘intriguing’
question: there will always be a diagonal situation for any two observables.

3.3. Non-classical weak values for the 4D BKS nonets

We can now clarify Mermin’s statement: ‘Alice’s other two ‘results’ have nothing to do with
any properties of the particle or the results of any measurement actually performed’ [26]. While
it is certainly true that these ‘other results’ cannot be ascertained simultaneously in terms of
an IM (as was demonstrated in subsubsection 3.2.4 and by Mermin), they can be measured
simultaneously through WMs. The route to an easy calculation of WVs can be established
from Mermin’s description of VAA’s accomplishment: ‘Alice’s list gives the observed result
for the measurement Bob actually made and had he measured anything else it would have
given the result he observed’ [26]. This provides a direct route to WMs through theorem 3:
WMs will produce the identical result as predicted for the IM since the IM results are definite.
Thus, the other ‘results’ are related to properties of the particle and can be simultaneously
measured.

We can also obtain non-classical results in this example (similar to the three-box paradox),
by first rewriting the observables of figure 4 in terms of three-spin components for two ‘virtual’
particles: for the first particle, Ŝ1

3 ≡ σ̂ 1
x σ̂ 2

y , Ŝ1
2 ≡ σ̂ 1

x σ̂ 2
z , and Ŝ1

1 ≡ σ̂ 2
x ; for particle 2, components

which commute with particle 1 are Ŝ2
3 ≡ σ̂ 2

x σ̂ 1
y , Ŝ2

2 ≡ σ̂ 1
z σ̂ 2

x , and Ŝ2
1 ≡ σ̂ 1

x . We can observe a
non-classical WV by noting that σ̂ 1

x σ̂ 2
y σ̂ 2

x σ̂ 1
y = −1 given the PPS of figure 6(a) even though

separately σ̂ 1
x σ̂ 2

y = +1 and σ̂ 2
x σ̂ 1

y = +1, i.e. a violation of the product rule and thus a diagonal

5 If we were considering a single PPS, as discussed in subsubsections 3.2.1 and 3.2.2, then some pairs of products of
observables can be ascertained with certainty, but not any two pairs. No two products can be ascertained in the case
of 16 observables and some two pairs of products cannot be ascertained for the nine observables.
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situation (see figure 7(a)). Thus WMs must yield the same outcomes, i.e. N̂
(
Ŝ1

3

)
w = +1 and

N̂
(
Ŝ2

3

)
w = +1 but N̂

(
Ŝ1

3Ŝ2
3

)
w = −1, a non-classical result. To analyse these results, we define

the following pair occupation operators:

N̂++ the projector on the state Ŝ1
3 = 1 and Ŝ2

3 = 1
N̂+− the projector on the state Ŝ1

3 = 1 and Ŝ2
3 = −1

N̂−+ the projector on the state Ŝ1
3 = −1 and Ŝ2

3 = 1
N̂−− the projector on the state Ŝ1

3 = −1 and Ŝ2
3 = −1.

We can relate these measurements to the three box example of subsection 1.3, but in this case
we have two boxes and two particles: N̂++ means the number of times that particles 1 and 2 are
in the first box, N̂+− means the number of times that particle 1 is in the first box and particle
2 is in the second box, etc. The WV of the projection operator

(
1 − Ŝ1

3

)(
1 − Ŝ2

3

)
is − 1

2 , a
non-classical result. From theorems 2 and 3, we can deduce the following: the different ways
to obtain N̂

(
Ŝ2

3

) = +1 are given by N̂++ (i.e. Ŝ1
3 = 1 and Ŝ2

3 = 1) and N̂−+ (i.e. Ŝ1
3 = −1 and

Ŝ2
3 = 1) and therefore we can deduce that

N̂∗+ ≡ N̂++ + N̂−+ = 1. (3.12)

In terms of the box analogy, this is how many ways that particle 2 can be found in box 1. Also
N̂
(
Ŝ1

3

) = +1, and thus N̂
(
Ŝ1

3

) �= −1 (i.e. how many ways can particle 1 be found in box 1).
This is characterized by

N̂+∗ ≡ N̂++ + N̂+− = 1. (3.13)

From Ŝ1
3Ŝ2

3 = −1 (which again means that both particles cannot be found in the same box),
it cannot be that Ŝ2

3Ŝ1
3 = +1 and thus Ŝ2

3 and Ŝ1
3 must be opposite in sign. This can be

characterized by

N̂++ + N̂−− = 0. (3.14)

Furthermore, since equation (3.12) equals equation (3.13), we can deduce

N̂+− = N̂−+. (3.15)

Subtracting equation (3.14) from the following identity:

N̂++ + N̂−− + N̂+− + N̂−+ = +1, (3.16)

we obtain

N̂+− + N̂−+ = 1. (3.17)

Equation (3.17) implies that the two particles are never in the same box. From equations (3.15)
and (3.17), we can deduce

N̂−+ = N̂+− = 1
2 . (3.18)

Substituting this value into equation (3.13), we can deduce that

N̂++ = 1
2 . (3.19)

Finally, substituting this into equation (3.14), we can deduce

N̂−− = − 1
2 . (3.20)

As shown in [11], all these statements can be measured simultaneously through WMs and will
yield

(N̂−+)w = (N̂+−)w = (N̂++)w = 1
2 , (3.21)
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while

(N̂−−)w = − 1
2 . (3.22)

In other words, if a WM is performed on the number of times that particle 1 is in the second
box and particle 2 is in the second box, then the result is the non-classical result − 1

2 . Thus,
the way that the two seemingly contradictory statements σ̂ 1

z σ̂ 2
z = ±1 can weakly ‘peacefully

co-exist’ is that a WV goes outside the spectrum of possible eigenvalues, i.e. equation (3.22).
In summary, we see again that WMs give an empirical manifestation of BKS:

• the BKS ‘contradiction’ here is that σ̂ 1
x σ̂ 2

y σ̂ 2
x σ̂ 1

y = −1 (given the PPS of figure 6(a)) even
though separately σ̂ 1

x σ̂ 2
y = +1 and σ̂ 2

x σ̂ 1
y = +1;

• these three outcomes can be measured weakly without contradiction because the product
of WVs is not equal to the WV of the product;

• if BKS were not correct and a noncontextual HVT were possible, then the product rule
should be satisfied and an IM of σ̂ 1

x σ̂ 2
y σ̂ 2

x σ̂ 1
y should yield +1. This leads to an immediate

contradiction because

– by theorem 3, the WV must be equal to the ideal result
– but, this would be inconsistent with an actual WM which will register (N̂−−)w = − 1

2 ,

• therefore, BKS is empirically consistent with WMs.

We have thus given a physical explanation for why an IM cannot reveal these values, while
WMs can reveal these values. Thus, with WMs, the BKS ‘contradiction’ still exists (i.e. a
noncontextual HVT cannot reproduce QM), yet now it can also be measured. In other words,
we have physically shown how to obtain

• +1 for the product of all nine observables when this is performed in the sequence of the
rows of figure 4,

• −1 for the product of all nine observables when this is performed in the sequence of the
columns of figure 4

(assuming that the system is PPS and measured weakly). The ambiguity in determining
whether σ̂ 1

z σ̂ 2
z = +1 is obtained or σ̂ 1

z σ̂ 2
z = −1 is obtained gets shifted to the ambiguity of

determining which set of boundary conditions is obtained, i.e. it is now a physical property of
the system.

As shown in the following section, the WVs calculated in subsection 3.3
(e.g. equations (3.22) and (3.21)) are identical to WVs for EPR entanglement [29] and thus
entanglement in a pre-selected state of two particles is isomorphic to an entanglement in our
two virtual particles.

3.4. Non-classical weak values for EPR and Peres/BKS

We shall now show that WVs can show new connections between BKS and EPR.
Equations (3.22) and (3.21) give the same result as calculating WVs for EPR entanglement
[29] and thus there is an interesting new kind of isomorphism between the problems of WVs
in BKS nonets and EPR. We can also consider interesting manifestations of the ‘contextuality’
in these situations by making separate measurements on the ancilla. Consider a pre-selected
state which is entangled between one of the particles of the nonet and the ancilla (where,
following Mermin, we have chosen the ancilla to be an orthonormal set |f1〉:

|A〉 = 1√
2

(∣∣σ̂ 1
z = +1

〉|f0 = +1〉 − ∣∣σ̂ 1
z = −1

〉|f0 = −1
)
. (3.23)
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If we consider product state post-selections, e.g. with σ̂ 1
x = 1 and f0 = +1, then we know that

an IM of σ̂ 1
x f0 must yield

σ̂ 1
x f0 = 1. (3.24)

The pre-selected state also yields6

σ̂ 1
x f0 + f1σ̂ 1

z = 0. (3.25)

Thus{
σ̂ 1

x f0 + f1σ 1
z

}{∣∣↑1
z

〉|f0 = −1〉 − ∣∣↓1
z

〉|f0 = +1〉}
= {−∣∣↓1

z

〉|f0 = −1〉 +
∣∣↑1

z

〉|〉}− {∣∣↑1
z

〉|〉 − ∣∣↓1
z

〉|f0 = −1〉} = 0. (3.26)

We can deduce outcomes for un-performed measurements of σ̂ 1
z :

σ̂ 1
z = −1, (3.27)

(we have assumed that the ancilla is not disturbed to obtain this conclusion). We can also
deduce outcomes for un-performed measurements of f1 (assuming that the first particle is not
disturbed):

f1 = −1. (3.28)

Once again, we see a violation of the product rule [28]: from equation (3.26) we deduce that
f1σ̂ 1

z = −1, but if constructed individually from equations (3.28) and (3.27), f1σ̂ 1
z = +1.

This ‘conclusion’, however, relies on counter-factual statements, since not all the required
measurements equations (3.25)–(3.28) can be performed simultaneously without disturbing
each other. However, we can perform WMs on all these statements simultaneously (see
subsection 3.3).

WVs in the EPR situation can also be seen in the instant example if we consider this
PPS (instead of a Bell state, we measure a definite state of the ancilla). We see the identical
non-classical results as seen in the previous section. First, we define the following projectors:

N++ the projector on the state σ̂ 1
z = 1 and f1 = 1

N+− the projector on the state σ̂ 1
z = 1 and f1 = −1

N−+ the projector on the state σ̂ 1
z = −1 and f1 = 1

N−− the projector on the state σ̂ 1
z = −1 and f1 = −1.

From theorems 2 and 3, we can deduce the following: from the post-selection σ̂ 1
x = +1, we

can deduce that f1 = −1, i.e. equation (3.28). The different ways to obtain f1 = −1 are given
by N+− (i.e. σ̂ 1

z = 1 and f1 = −1) and N−− (i.e. σ̂ 1
z = −1 and f1 = −1), and therefore we can

deduce the conservation relationship

N+− + N−− = 1. (3.29)

Now σ̂ 1
z = −1, and thus σ̂ 1

z �= +1 is characterized by

N+∗ ≡ N++ + N+− = 0. (3.30)

In terms of the box analogy, this is how many ways that particle 1 can be found in box 1. In
addition, if f1 = −1 then f1 �= +1 thereby giving

N++ + N−+ = 0. (3.31)

That is, in how many ways can particle 2 be found in box 2. Furthermore, since equation (3.31)
equals equation (3.30), we can deduce

N+− = N−+. (3.32)

6 This is easy to see because f1σ̂ 1
z |↑1

z〉|f0 = −1〉 → |↑1
z〉|f0 = +1〉 and σ̂ 1

x f0|↑1
z〉|f0 = −1〉 → −|↓1

z〉|f0 = −1〉 and
f1σ̂ 1

z |↓1
z〉|f0 = +1〉 → −|↓1

z〉|f0 = −1〉 and σ̂ 1
x f0|↓1

z〉|f0 = +1〉 → |↑1
z〉|f0 = +1〉.
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From the post-selection, we know that an IM of σ̂ 1
x f0 will yield +1, therefore, using

equation (3.25), we can deduce that f1σ̂ 1
z = −1 (which means that both particles cannot

be found in the same box), i.e.

σ̂ 1
x f0︸︷︷︸

=+1

+ f1σ̂ 1
z︸︷︷︸

⇒=−1

= 0. (3.33)

Next we ask how to obtain f1σ̂ 1
z = −1. To obtain this, it cannot be that f1σ̂ 1

z = +1 and thus
f1 and σ̂ 1

z must be opposite in sign. This can be characterized by

N++ + N−− = 0. (3.34)

Subtracting equation (3.34) from the following identity:

N++ + N−− + N+− + N−+ = +1, (3.35)

we obtain

N+− + N−+ = 1. (3.36)

From equations (3.32) and (3.36), we can deduce

N−+ = N+− = 1
2 . (3.37)

Plugging this value into equation (3.30), we can deduce that

N++ = − 1
2 . (3.38)

Finally, plugging this into equation (3.34), we can deduce

N−− = 1
2 . (3.39)

Entanglement in a pre-selected state of two particles is isomorphic to an entanglement in our
two virtual particles. Thus, if we look at the right variables, then the BKS setup can be seen
to be related to EPR.

The situation analysed above is general and also points to the Peres/BKS-example [46]:
in summary, consider a pre-selected state |�EPR〉 = 1√

2

(∣∣↑1
z

〉∣∣↓2
z

〉 − ∣∣↓1
z

〉∣∣↑2
z

〉)
for which the

following identity holds: σ̂ 1
x σ̂ 2

y + σ̂ 2
x σ̂ 1

y = 0. In addition, |�EPR〉 is also an eigenvector
(with eigenvalue −1) of the following operators: σ̂ 1

x σ̂ 2
x , σ̂ 1

y σ̂ 2
y , σ̂ 1

z σ̂ 2
z . It is easy to see that a

noncontextual HVT cannot assign values consistent with these operator relations

V �ψ
(
σ̂ 1

x σ̂ 2
x

) = V �ψ
(
σ̂ 1

y σ̂ 2
y

) = V �ψ
(
σ̂ 1

z σ̂ 2
z

) = −1. (3.40)

Consider the commuting observables Â1 = σ̂ 1
x σ̂ 2

y and Â2 = σ̂ 2
x σ̂ 1

y . We know that

Â1Â2 = σ̂ 1
x σ̂ 2

y σ̂ 2
x σ̂ 1

y = σ̂ 2
z σ̂ 1

z = −1 (3.41)

in the singlet state. The assumption of noncontextuality is that value assignments can be
made to equation (3.41) even when these assignments are taken from a different context:
e.g. assigning values from equation (3.40), we obtain

V �ψ
(
σ̂ 1

x

)
V �ψ
(
σ̂ 2

y

)
V �ψ
(
σ̂ 2

x

)
V �ψ
(
σ̂ 1

y

) = (−1)(−1) = +1, (3.42)

but experimentally, we obtain −1 from equation (3.41), a contradiction. Thus a noncontextual
HVT is impossible. However, now we can probe this state by post-selections and obtain
σ̂ 1

x σ̂ 2
y = −1 even though σ̂ 1

x = −1 and σ̂ 2
y = −1. This, again, can only be done with

PPSs since in a pre-selected only system, for two commuting observables, the product rule is
satisfied in contrast to PPSs. In addition, for this type of contextuality with PPSs, either the
pre-selected or the post-selected state must be the EPR state (with an additional assumption
of invariance under exchange of particles).
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4. Pre-and-post-selection and contextuality in higher dimensions

The feat presented in the previous section can be done in higher dimensions, e.g. to the GHZ
state [36, 41]. In this case, we see that it is not possible to replace the spin operators by ordinary
numbers (which is what a noncontextual HVT attempts to do). However, assignments can
be correctly made to each of the σ̂ ’s if post-selection is utilized. Once again, the limitations
to these assignments can be seen by using the structure of TSQM: if we try to measure all
of these observables together, then some of the values will be assigned in the diagonal-PPS
sense, and therefore measuring these observables will cause a disturbance even though they
commute. In brief, consider the GHZ case of 3-spins pre-selected in the state

|�in〉 = 1√
2

∣∣↑1
z↑2

z↑3
z

〉− 1√
2

∣∣↓1
z↓2

z↓3
z

〉
. (4.1)

Consider that the pre-selected state is an eigenstate of the following operators: Â1 ≡
σ̂ 1

x σ̂ 2
y σ̂ 3

y , Â2 ≡ σ̂ 1
y σ̂ 2

x σ̂ 3
y and Â3 ≡ σ̂ 1

y σ̂ 2
y σ̂ 3

x with eigenvalue +1, and is an eigenstate of

Â4 ≡ σ̂ 1
x σ̂ 2

x σ̂ 3
x with eigenvalue −1, and finally Â1Â2Â3 = −Â4. However, because Â1, Â2, Â3

and Â4 commute, and because σ̂ i
x, σ̂

j
y and σ̂ k

y commute one may ask whether it is possible
to also satisfy the above equations by replacing the spin operators by ordinary numbers
σ̂ 1

x = ±1, σ̂ 1
y = ±1. Without post-selection, this cannot be done because the assignments

are, once again, inconsistent with the multiplicative structure of the observables because
Â1Â2Â3 = 1, a contradiction.

4.1. GHZ and PPS

Assignments can be correctly made to each of the σ̂ ’s if post-selection is utilized with
limitations again arising from diagonal assignments. For example, consider a post-selection
of the three particles by measuring their x component with σ̂x = −1:

〈�fin| = 〈↓1
x↓2

x↓3
x

∣∣. (4.2)

For example, from the post-selected state we strongly know that σ̂ 1
x σ̂ 2

x σ̂ 3
x = −1 and from

the pre-selected state we strongly know that σ̂ i
x σ̂

j
y σ̂ k

y = +1. Thus statements of the form

σ̂
j
y σ̂ k

y = −1 can only be made when information is used from both the pre-selected vector and
from the post-selected vector. For example, if a measurement of σ̂ 1

y σ̂ 2
y is performed, then we

will definitely find σ̂ 1
y σ̂ 2

y = −1. However, if we attempt to perform a second measurement,
e.g. of σ̂ 3

y σ̂ 1
y then we will not find σ̂ 3

y σ̂ 1
y = −1, because the σ̂ 1

y σ̂ 2
y measurement will destroy the

pre-selected vector which contains the σ̂ i
x σ̂

j
y σ̂ k

y = +1 information that the σ̂ 3
y σ̂ 1

y measurement
depends on. This disturbance occurs even though σ̂ 1

y σ̂ 2
y and σ̂ 3

y σ̂ 1
y commute!

4.2. Weak values in GHZ state

We may also consider WMs of the GHZ observables [67]. With the post-selection
〈�fin| = 〈↓1

x↓2
x↓3

x

∣∣, then in the intermediate time we can replace σ̂ 1
x = σ̂ 2

x = σ̂ 3
x = −1

and taking the inner product with this post-selection |�fin〉, we then find

(
σ̂ 2

y σ̂ 3
y

)
w ≡ 〈�fin|σ̂ 2

y σ̂ 3
y |�in〉

〈�fin|�in〉 = −1 (4.3)

(
σ̂ 1

y σ̂ 2
y

)
w ≡ 〈�fin|σ̂ 1

y σ̂ 2
y |�in〉

〈�fin|�in〉 = −1 (4.4)



9058 J Tollaksen

(
σ̂ 1

y σ̂ 3
y

)
w ≡ 〈�fin|σ̂ 1

y σ̂ 3
y |�in〉

〈�fin|�in〉 = −1. (4.5)

Using again the analogy with particles in boxes, equation (4.3) means that particles 2 and 3
are not together in the same box, while equation (4.4) means that particles 1 and 2 are not
together in the same box, and equation (4.5) means that particles 1 and 3 are not together in
the same box. But we only have two boxes, so if 1 and 2 are not in the same box and 1 and
3 are not in the same box, then 2 and 3 must be in the same box. It is clear that the above
equalities cannot be satisfied simultaneously by replacing the operators for classical numbers
taking the values ±1. To simplify this analysis, we define

(N̂+++)w = |↑y〉〈↑y |1 ⊗ |↑y〉〈↑y |2 ⊗ |↑y〉〈↑y |3, (4.6)

where the two boxes are denoted by ± referring to the spin component along y. Using
theorems 2 and 3, it can be shown that

(N̂+++)w = N̂−−− = − 1
4 , (4.7)

and

(N̂++−)w = (N̂−−+)w = (N̂+−+)w = (N̂−+−)w = · · · = 1
4 . (4.8)

We have thus shown how to obtain non-classical WVs, i.e. negative triplet occupations.

5. Discussion

In this paper, we first emphasized the purely theoretical aspect of WVs by themselves before
considering their realization in actual measurement situations (i.e. in WMs). Although WVs
require an ensemble in order to be probed empirically with WMs, we can consider WVs by
themselves as a general, non-statistical and robust mathematical property of every individual
PPS system (see appendix B). By first focusing on the logical or mathematical aspects of WVs,
we were able to obtain novel insights on the subject of contextuality. For example:

• We proved that if we start with a situation that is ‘primed to reflect contextuality’
as reflected in BKS, then we can always find a post-selection which can empirically
manifest non-classical WVs. That is, with every pre- and post-selection leading to
‘quantum contextuality,’ some WVs will have a unique signature, namely a WV outside
of the eigenvalue spectrum. We believe that it is precisely these WVs which cannot be
reproduced by a noncontextual HVT (see subsections 5.1 and 5.2 below). Analysis
of the WVs shows how QM itself (rather than HVTs) can cope with the apparent
paradox of contextual situations in a new and interesting way. As Mermin emphasized:
‘ . . . what follows is not idle theorizing about ‘hidden variables’. It is a rock solid
quantum mechanical effort to answer a perfectly legitimate quantum mechanical question’
[26].

• The breakdown of noncontextuality in the three-box and Mermin examples required the
system to be pre- and post-selected from the beginning. In the three-box paradox of
subsection 1.3:

– P̂A = 1 if only box A is opened, while P̂B = 1 if only box B is opened,
– but if we measure both boxes A and B, then the particle will not be found in both

boxes, i.e. P̂AP̂B = 0 even though P̂A and P̂B commute, a violation of the product
rule.

– If WMs are performed, then the non-classical result (P̂C)w = −1 is obtained.
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• With respect to the Mermin example:

– ‘quantum contextuality’ is demonstrated here by σ̂ 1
x σ̂ 2

y σ̂ 2
x σ̂ 1

y = −1 (given the PPS of
figure 4(a)) even though separately σ̂ 1

x σ̂ 2
y = +1 and σ̂ 2

x σ̂ 1
y = +1;

– these three values can co-exist because the product of WVs is not equal to the WV
of the product;

– if ‘quantum contextuality’ were not correct and a noncontextual assignment of values
to operators were possible, then the product rule should be satisfied and σ̂ 1

x σ̂ 2
y σ̂ 2

x σ̂ 1
y

should yield +1. This leads to an immediate contradiction because
* by theorem 2, the WV must be equal to the ideal result,
* but this would be inconsistent because the calculated WV is

(
σ̂ 1

x σ̂ 2
y σ̂ 2

x σ̂ 1
y

)
w = −1.

• However, the breakdown of noncontextuality in GHZ and EPR can be seen with just a pre-
selection by itself, i.e. noncontextual HV assignments cannot be made. We are therefore
adding a new, previously un-explored perspective by showing that post-selections suggest
a physical picture for why the assignments cannot be made. In addition, the existence of
strange WVs demonstrates a new way that QM copes with contextuality. For example,
in the 4D/EPR case, σ̂ 1

x σ̂ 2
y = −1 even though σ̂ 1

x = −1 and σ̂ 2
y = −1. Before this

development, the ‘contextuality’ in these examples was thought only to exist at the level
of HVTs, but now it can be probed empirically.

• We have also demonstrated a new approach to contextuality in PPS situations with just IMs
because the sum rule is not necessarily satisfied. The reason follows the same interference
argument used for the violation of the product rule with WVs.

• Finally, as we argued in [11], WVs obey a simple, intuitive and, most importantly,
self-consistent logic. This is in stark contrast with the logic of the original counter-
factual statements which is not internally self-consistent and leads into paradoxes. We
are convinced that, due to its self-consistency, the WV logic will lead to a deeper
understanding of the nature of quantum mechanics. To illustrate this intuition again,
by way of example, consider a generic multi-particle system in a higher dimensional
space ρ(x1, x2) ∼ �∗

fin(x1, x2)�in(x1, x2) and also consider projections onto space and
time. In general, ρ(x1, x2) cannot be measured locally because there is no local way of
measuring particle 1 at x1 simultaneously with measuring particle 2 at x2: this would
involve a nonlocal Hamiltonian. However, the projection on each line can be measured
separately: if it is known that particle 2 is at x2 then this means

∫
ρ(x1, x2) dx1 = 1.

Similarly, if it is known that particle 1 is at x1 then this means
∫

ρ(x1, x2) dx2 = 1.
However, asking the question if both particles are there together is another point in phase
space (see figure 11). Our main point is that the particle also could have been located
simultaneously in another position with certainty, but then we would have to place a
negative number somewhere else in order to satisfy the global constraint, i.e. the integral
of the WVs has to add up to 1 (because there is just a single particle along each line), but
the individual numbers at each point can be arbitrary. IM outcomes reveal an integration
along just one line, but the WV densities are not just those lines. For example, in the
Hardy case [11] the seeming contradiction that both particles are there individually but
are not there together is resolved by a negative number of particles at another point in
phase space.

• Finally, WVs in logical PPS-paradoxes can be revealed (under certain circumstances)
through WMs (see appendix B). We have therefore shown new ways that the ‘charming
elementary mathematics’ [26] of BKS can manifest empirically.
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Figure 11. Weak value density for two particles.

5.1. Possible relationships between HVTs and weak values

We summarize some general considerations on possible relationships between HVTs and
WVs.

5.1.1. New criterion for HVTs to reproduce weak values. Let us consider possible HVs for
the particular WM and WV described in appendix A. Suppose for a single particle, we have
a HV which gives the pre-selection, |↑x〉, another HV which gives the post-selection, |↑y〉,
and another HV which gives the result for an intermediate IM of σ̂x+σ̂y√

2
which could be +1

or −1. But as shown in appendix B, a WM for an ensemble of such particles will robustly
reveal a WV of

√
2. How then could we associate a HV for this WM? There are two general

possibilities.

• If the WV is a property of an individual system (not just an ensemble, see appendix B) and
if in addition we want to add HVs, then it appears that the 2 are inconsistent unless any
WM during the intermediate time will definitely disturb the HV (because the IM yields a
different result).

• A WM must give a different value than IMs because a WM cannot be performed robustly
on a single system.

The first option shows that the HVs which are supposed to give the outcome for all IMs become
completely sensitive to an arbitrarily weak WM. Indeed, even in the limit of arbitrarily weak
interactions, there will still be a finite disturbance to the HV for the same large fraction of
particles in the ensemble. For a number of reasons (see, e.g. appendix B), the second option
is also, in our opinion, not very physical. Nevertheless, these considerations suggest new
criterion for HVs in addition to contextuality and non-locality. That is one or both of the
following assumptions would have to be violated.

• Criterion 1. HVs should be stable, i.e. an arbitrarily small disturbance should not disturb
the HVs.

• Criterion 2. If a HV has a certain value, then if anything couples weakly to it, then the
weak coupling should produce a completely different value.

Finally, it was also argued [24, 29] that a noncontextual HVT can reproduce QM if we
allow for a disturbance of the HVs: ‘the possibility of measurement disturbance blocks the
conclusion that a PPS-paradox is itself a proof of the contextuality of HVTs’. The motivation
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[24] behind this assertion was the belief that PPS-paradoxes could be explained entirely within
classical mechanics [39, 40] and that contextuality should not be regarded as fundamental in
a classical picture of reality. Nevertheless, the ‘paradoxical’, i.e. non-classical, nature of the
three-box paradox was recently reaffirmed in terms of IMs [42]. In this paper, we expanded
this point in a number of ways, e.g. by arguing that non-classical WVs can be empirically
demonstrated in PPS-paradoxes. Non-classical WVs include those outside the eigenvalue
spectrum which cannot be reproduced from any positive definite probability distribution of
eigenvalues [1, 29, 30]. In addition, with WMs, there is no measurement disturbance, yet non-
classical results are still obtained. If we consider robust WMs in which there is no disturbance
to the quantum state (see appendix B and [54]), then if we assume criterion 1, i.e. that a WM
does not considerably modify the HV, then a HV proof of contextuality (rather than quantum
contextuality) could proceed. This would therefore weaken the conclusion that ‘the possibility
of measurement disturbance blocks the conclusion that a PPS-paradox is itself a proof of the
contextuality of HVTs’ [25] while strengthening the proof of contextuality [24].

5.1.2. Disharmony between quantum measurement theory and HVTs. Even before any
consideration of WMs, WVs, or PPS, we suggest another general difficulty for HVTs. Many
HVT approaches [24] require that non-commuting observables (such as p and x) can have a
‘simultaneous’ precise reality, as suggested, e.g. by the Wigner–Moyal method. If we require
that any theoretical formalism should include exactly what can be measured (no more and
no less), then it should be possible to make measurements on these projections. While such
densities do give the correct average of a function, i.e.

∫
ρ(x, p)f (x, p) dx dp (thus appear

to behave as proper densities), they also have un-physical aspects, i.e. mathematical artefacts,
when the densities become negative. The reason (as will be shown subsequently) is that if we
attempt to actually measure such ‘negative’ properties, then the result does not correspond to
a physical observable in Hilbert space. For example, if we did try to project on p and x as
densities simultaneously, then we obtain the parity operator, taking a generic ψ(x) to ψ(−x).
To see this, we translate the classical projection p = 0 and x = 0 into QM:∫ ∞

−∞

∫ ∞

−∞
eiαx+iβp dα dβ ⇒︸︷︷︸

QM

∫ ∞

−∞

∫ ∞

−∞
e

iαβ

2 eiαx̂ eiβp̂ dα dβ. (5.1)

Consider applying this to a generic wavefunction. First, the exponential, eiβp̂, translates ψ(x).
Integrating then over α produces a delta function

∫ ∞

−∞

∫ ∞

−∞
ei

αβ

2 eiαxψ(x + β) dα dβ =
∫ ∞

−∞


∫ ∞

−∞
eiα(x+ β

2 ) dα︸ ︷︷ ︸
δ(x+ β

2 )

ψ(x + β) dβ. (5.2)

Finally, integrating over β, we obtain β = −2x, and thus ψ(x − 2x) = ψ(−x). Therefore,
the quantum analogue of the classical projection does not correspond to a quantum projector:
it corresponds to a highly non-local result, the parity operator.

Therefore, while there is an operational meaning to a density over a set of commuting
observables, there are significant difficulties with densities over a set of non-commuting
observables even though such densities may have formal utility as an aide to calculation.

5.2. Open question: can noncontextual HVTs account for weak values?

It remains a significant open question whether any noncontextual model, such as those proposed
in [24], can reproduce the WV results discussed in this paper. While there is no proof, the
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uniqueness of quantum-WVs and quantum-WMs in the three-box paradox has been addressed
separately in [42] and experimentally in [34]. It has been demonstrated in [1] that strange
WVs cannot be reproduced from any positive definite probability distribution of eigenvalues.
For this and other reasons (to be addressed in a future paper), we therefore believe that strange
WVs cannot be reproduced in a classical-like HVT without pre- and post-selection and without
quantum interference.

6. Conclusion

We have analysed contextuality in terms of pre- and post-selection, and have shown that it is
possible to assign definite values to observables in new and surprising ways. We presented new
physical reasons for restrictions on these assignments. WMs suggest that novel experimental
aspects of contextuality can be empirically demonstrated. We also proved that every logical
PPS-paradox directly implies ‘quantum contextuality’ which is introduced as the analogue
of contextuality at the level of QM rather than at the level of HVTs. Finally, we argued
that certain results of these measurements (e.g. eccentric weak values outside the eigenvalue
spectrum) cannot be explained by a ‘classical-like’ HVT.

Although the outcomes of the WMs suggest a story which appears to be even stranger
than the original one, the situation is in fact far better. The WVs obey a simple, intuitive and,
most importantly, self-consistent logic. This is in stark contrast with the logic of the original
counter-factual statements which is not internally self-consistent and leads into paradoxes.
Strangeness by itself is not a problem; self-consistency is the real issue. In this sense the logic
of the WVs is similar to the logic of special relativity. That light has the same velocity in all
reference frames is certainly highly unusual, but everything works in a self consistent way,
and because of this special relativity is rather easy to understand. We are convinced that, due
to its self-consistency, the WMs logic will lead to a deeper understanding of the nature of QM.
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Appendix A. Information gain without disturbance: safety in numbers

It follows from equation (1.9) that the probability for a collapse decreases as O(λ2), but the
measuring device’s shift grows linearly O(λ), so δPmd = λai . For a sufficiently weak
interaction (e.g. λ � 1), the probability for a collapse can be made arbitrarily small,
while the measurement still yields information but becomes less precise because the shift
in the measuring device is much smaller than its uncertainty δPmd � �Pmd (figure 3(b)).
If we perform this measurement on a single particle, then two non-orthogonal states will
be indistinguishable. If this were possible, it would violate unitarity because these states
could time evolve into orthogonal states |�1〉

∣∣�in
md

〉 −→ |�1〉
∣∣�in

md(1)
〉

and |�2〉
∣∣�in

md

〉 −→
|�2〉

∣∣�in
md(2)

〉
, with |�1〉

∣∣�in
md(1)

〉
orthogonal to |�2〉

∣∣�in
md(2)

〉
. With weakened measurement

interactions, this does not happen because the measurement of these two non-orthogonal
states causes a smaller shift in the measuring device than its uncertainty. We conclude
that the shift δPmd of the measuring device is a measurement error because �̃MD

fin (Pmd) =〈
Pmd − λ〈Â〉∣∣�in

md

〉 ≈ 〈
Pmd

∣∣�in
md

〉
for λ � 1. Nevertheless, if a large

(
N � N ′

λ

)
ensemble

of particles is used, then the shift of all the measuring devices
(
δP tot

md ≈ λ〈Â〉N ′
λ

= N ′〈Â〉)
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becomes distinguishable because of repeated integrations, while the collapse probability still
goes to zero. That is, for a large ensemble of particles which are all either |�2〉 or |�1〉, this
measurement can distinguish between them even if |�2〉 and |�1〉 are not orthogonal (because
the scalar product

〈
�

(N)
1

∣∣�(N)
2

〉 = cosn θ −→ 0).
Using these observations, we now emphasize that the average of any operator Â, i.e.

〈Â〉 ≡ 〈�|Â|�〉, can be obtained in three distinct cases [30].

(i) Statistical method with disturbance. The traditional approach is to perform IMs of Â on
each particle, obtaining a variety of different eigenvalues, and then manually calculate the
usual statistical average to obtain 〈Â〉.

(ii) Statistical method without disturbance. As demonstrated by using Â|�〉 = 〈Â〉|�〉 +
�A|�⊥〉. We can also verify that there was no disturbance: consider the spin-1/2
arrangement in the Mermin example (subsubsection 3.2.1), pre-selecting an ensemble,
|↑x〉, then performing a weakened measurement of σ̂ξ and finally a post-selection again in
the x-direction (figure B1). For every post-selection, we will again find |↑x〉 with greater
and greater certainty (in the weakness limit), verifying our claim of no disturbance. Each
measuring device is centred on 〈↑x |σξ |↑x〉 = 1√

2
and the whole ensemble can be used

to reduce the spread. The weakened interaction for σ̂ξ means that the inhomogeneity
in the magnetic field induces a shift in momentum which is less than the uncertainty
δP

ξ

md < �P
ξ

md, and thus a wave packet corresponding to σ̂x+σ̂y√
2

= 1 will be broadly

overlapping with the wave packet corresponding to σ̂x+σ̂y√
2

= −1.

(iii) Non-statistical method without disturbance. It is the case where 〈�|Â|�〉 is the
‘eigenvalue’ of a single ‘collective operator,’ Â(N) ≡ 1

N

∑N
i=1 Âi (with Âi being the

same operator Â acting on the ith particle). Using this, we are able to obtain information
about 〈�|Â|�〉 without causing disturbance (or a collapse) and without using a statistical
approach because any product state |�(N)〉 becomes an eigenstate of the operator Â(N). To

see this, we apply theorem 1 (Â|�〉 = 〈Â〉|�〉 + �A|�⊥〉 see footnote 4) to Â
(N)|�(N)〉,

i.e.,

Â(N)|�(N)〉 = 1

N

[
N〈Â〉|�(N)〉 + �A

∑
i

∣∣�(N)
⊥ (i)

〉]
, (A.1)

where 〈Â〉 is the average for any one particle and the states
∣∣�(N)

⊥ (i)
〉

are mutually

orthogonal and are given by
∣∣�(N)

⊥ (i)
〉 = |�〉1|�〉2 · · · |�⊥〉i · · · |�〉N . That is, the ith

state has particle i changed to an orthogonal state and all the other particles remain in the
same state. If we further define a normalized state

∣∣�(N)
⊥
〉 = ∑

i
1√
N

∣∣�(N)
⊥ (i)

〉
then the last

term of equation (A.1) is �A√
N

∣∣�(N)
⊥
〉

and its size is
∣∣ �A√

N

∣∣�(N)
⊥
〉∣∣2 ∝ 1

N
→ 0. Therefore,

|�(N)〉 becomes an eigenstate of Â(N), with the value 〈Â〉 and not even a single particle
has been disturbed (as N̂ → ∞).

Tradition has dictated that when measurement interactions are limited so there is no
disturbance on the system, then no information can be gained. However, we have now shown
that when considered as a limiting process, the disturbance goes to zero more quickly than the
shift in the measuring device, which means for a large enough ensemble, information (e.g. the
expectation value) can be obtained even though not even a single particle is disturbed.
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Figure B1. Obtaining the average for an ensemble.

Figure B2. Obtaining the WV statistically for an ensemble.

Appendix B. Weak values can be considered as logical properties of individual systems

For the last case, we can also verify that there was no disturbance caused to the system.
By way of example, suppose we were to apply the last option to aspects of the Mermin
example (subsection 3.3). Suppose we were to pre-select each particle in x, |↑x〉, (i.e.∣∣�(N)

in

〉 = ∏N
j=1 |↑x〉j ), perform a measurement of the collective observable in the 45◦ angle

to the x–y plane of σ̂
(N)
ξ ≡ 1

N

∑N
i=1 σ̂ i

ξ , and then perform a post-selection again in the
x-direction. For every post-selection, we will again find |↑x〉 with certainty, verifying our
claim of no disturbance. Over the whole ensemble, the measuring device will robustly register
〈σ̂ξ 〉 = 1√

2
, i.e. the average for an individual particle, which is the same answer as the first

(statistical) method. This is thus consistent with the statement that the average is a property of
the individual particle, only its value is obtained robustly (by summing the collective operator)
in a non-statistical sense over the whole ensemble (see figure B1).

To see how this is relevant for WMs and WVs, once again, we insert a complete set
of states {|�fin〉j } into 〈�in|Â|�in〉 (where we take |�in〉 ≡ |↑x〉) yielding equation (1.10).
We interpret the states 〈�fin|j as the possible outcomes of a final ideal measurement on the
system, i.e. a post-selection. This is precisely how we interpreted 〈�in| in the verification
of the expectation value. We can therefore analyse the same problem with a post-selection
different from the original definite 〈�in| post-selection used in verifying the expectation value.
By way of example, let us consider a post-selection in the y-direction, i.e. we have N particles
pre-selected with σ̂x = 1, a WM of σ̂45 (which does not significantly disturb the spins which
are thus still in the state σ̂x = 1 after the σ̂45 measurement) and followed by a post-selection
in the y-direction. The probability of obtaining σ̂y = 1 is 1/2 and thus the total probability of
finding all N spins with σ̂y = 1 is an exponentially small 2−N (see figure B2).



Pre- and post-selection, weak values and contextuality 9065

If we look at only those results with σ̂y = 1, then the pointer is robustly shifted by the
strange WV

√
2:

(σ̂ξ )w =
∏N

k=1〈↑y |k
∑N

i=1

{
σ̂ i

x + σ̂ i
y

}∏N
j=1 |↑x〉j√

2N(〈↑y |↑x〉)N
=

√
2 ± O

(
1√
N

)
. (B.1)

Using the same argument as for the expectation value, WVs can be considered as a non-
statistical robust mathematical property of an ensemble. However, if we do not see the strange
WV, this does not mean that the WV was not already ‘there,’ only we were not lucky enough to
see it. That is, in the first case of verifying the expectation value, we knew that every member of
the ensemble would satisfy the post-selection of 〈↑x |. With different post-selections, the only
difference is that we do not know ahead of time which sub-ensemble will satisfy a particular
post-selection criteria. But this does not mean that the WV cannot be analysed separately
from actual experiments. One might argue that the third case, i.e. the non-statistical method
without disturbance, is not sufficiently general because the probability |〈�fin|�in〉|2N for all N
particles to end up in the same final state |�fin〉 becomes exponentially small. Recently [30]
it was shown how to obtain a robust WV with a much smaller sample: e.g. for the particular
pre- and post-selection considered here, approximately N/2 out of N pre-selected particles
will satisfy the post-selection criterion and thus this result is not a rare outcome.
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